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1.0 RESEARCH

1.1 INTRODUCTION

Probabilistic structural analysis methods are particularly useful in the design and

analysis of space propulsion systems operating in severe and uncertain environments. By

quantifying the uncertainties associated with the design, these methods play a critical role in

establishing increased performance and reliability for such systems, both current and future. A

prime example of a current space propulsion system is the Space Shuttle Main Engine (SSME).

For this project, a fuel turbopump blade, a component of the SSME, was analyzed using a

probabilistic finite element code, NESSUS, along with an embedded Material Strength

Degradation (MSD) model.

The use of NESSUS and the MSD model are dictated by tile dispersion of the physical

quantities involved. The considerable scatter of experimental data and the lack of an exact

description of the underlying physical processes for the combined mechanisms of fatigue,

creep, temperature variations and so on, make it natural, if not necessary to consider

probabilistic models for a strength degradation model. This engine operates in a harsh

environment with high loads and temperature extremes. As noted from C.C. Chamis and D.A.

Hopkins "... hot rotating structural components are relatively small. Fabrication

tolerances on these components which in essence are small thickness variations, can have

significant effects on the component structural response. Fabrication tolerances by their

very nature are statistical. Furthermore, the attachment of components in the structural

system generally differ by some indeterminate degree, from that assumed for designing

the component. In summary, all four fundamental aspects: (1) loading conditions, (2)

material behavior, (3) geometrical configuration and (4) supports on which structural

analysis are based, are of a random nature. The direct way to formally account for all

these uncertain aspects is to develop probabilistic structural analysis methods where all

participating variables are described by appropriate probabilistic density functions. [1]"

The SSME fuel turbopump blade discussed here is a prime example of a small component

whose variations in thickness, strengths, etc., significantly affect its structural response.

The main objective of this project was to determine which input parameters most

influence the structural response of the turbopump blade. A finite element model of a

turbopump blade, composed of Inconel 718, a material for which the MSD model is calibrated,

was analyzed for the effects of high temperature and high cycle mechanical fatigue. Section
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1.2 presents NESSUS and the newly implemented MSD model. An overview of statistical

terminology and definitions concerning structural reliability are provided in Section 1.3.

Section 1.4 characterizes the SSME fuel turbopump blade as well as outlines NESSUS

input and output data files. Sections 1.5 through 1.7 present analysis results. In Section 1.5

reliability results are presented and comparisons between the Advanced Mean Value (AMV)

method and the well-known Monte Carlo Simulation method are summarized. Section 1.6

discusses sensitivity factor results. Also discussed is the effect on sensitivity factor results for

a change in the blade thickness random field from a single correlated random variable to a

partially correlated random variable. Section 1.7 examines how changing the distribution type

on a single random variable influences both reliability and sensitivity factor results.

Conclusions drawn from these results are presented in Section 1.8.

NASA/CR--200 !-211112 2



1.2 NESSUS

Historically, NESSUS has provided probabilistic structural analysis for the response of

engineered structures. It integrates both probabilistic analysis and finite element methods to

produce a useful tool for both design and analysis of critical structural components. NESSUS

allows for both random and deterministic descriptions of input and output quantities. For

example, input parameters for material properties such as Young's modulus, Poisson's ratio,

and mass density can be modeled as random variables wherein the user provides the

appropriate statistics, namely mean, standard deviation and distribution type [2]. In addition,

random input can include random fields, as well as random variables. Distributions such as

Gaussian, Weibull, or lognormal may be selected. Other input parameters, such as loading

type, geometry, boundary conditions and initial conditions can also be considered random.

Then, probabilistic analysis yields the cumulative distribution functions (CDF's) of the output

random variables, e.g., stresses, strains, displacements, etc.

Code Organization

NESSUS is divided into ten parts. The preprocessor, NESSUS/PRE, provides for the

representation of random fields. NESSUS/PRE computes a set of independent random

variables from the random fields using an eigenvalue decomposition [3]. PFEM is the module

for coordinating the operations between the finite element code and FPI. Next, a deterministic

finite-element module, NESSUS/FEM, generates the deterministic responses of the finite-

element structural model to a number of prescribed perturbations of the input variables.

NESSUS/FEM contains a mixed iterative procedure to obtain the response of a structure. A

Newton-Raphson iterative procedure based on a mixed variational principle can be used in

NESSUS/FEM. Besides FEM, BEM, the boundary element module is used for structural

analysis. These deterministic solutions provide the data from which a first or second-order

Taylor series of the response is fit that defines the explicit functional relationship between the

input random variables and the response of interest. The postprocessor, NESSUS/FPI (Fast

Probability Integration), performs the probability calculations. The postprocessor also includes

a choice of probabilistic analysis methods other than FPI, including for example, Adaptive

Importance Sampling (AIS) and Monte Carlo simulation [4,5]. SIMFEM however, contains

the driving module for the Monte Carlo as well as the Latin Hypercube sampling of the

structure. There are also other packages for specialized analysis such as the RISK, SYSTEM

and SYSRSK modules. The RISK module computes the risk with respect to cost or a user

defined criteria. The SYSTEM module is an alternate system reliability method for

probabilistic fault tree analysis. The SYSRSK module computes the system risk by combining

the cost of failure, in terms of replacement, inspection, repair or other criteria of individual
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components of the system with their probability of failure. The current version of NESSUS

provides these ten component parts in an integrated package. These modules can be used in

various combinations as the user desires.

This project required the use of the PRE, PFEM, FEM and FPI modules. For the

random thickness field, PRE was used to compute a set of independent random variables from

the random field thickness input using an eigenvalue decomposition. The resulting file was

then used by the PFEM, FEM and FPI modules for further analysis.

The AMV method is a mean-based predictor-corrector method which uses local

gradients to project the results for the entire CDF then corrects the prediction with a re-analysis

of the structural model at each predicted point. The local gradients are usually, but not

necessarily, taken about the mean values of the random variables. The AMV method with

iterations, termed AMV+, is an extension of the AMV method. It involves new gradient

computations about the previously predicted results. These new gradients are then used to

compute an improved result. Both AMV and AMV + results can either be specified as an

automatic CDF analysis, a number of probability levels or a specified response corresponding

to a specified probability [6]. Convergence to a specific tolerance can be specified by the user.

The FEM module then calculates the deterministic response where the Newton-Raphson

iterative procedure is enabled. Finally the FPI module calculates the structural reliability of the

turbopump blade.

Material Strength Degradation (MSD) Model

The enhanced version of NESSUS reported in this document, includes a previously

developed probabilistic material strength degradation (MSD) model [7]. The MSD model in the

form of a postulated randomized multi-factor equation provides for quantification of uncertainty

in the lifetime strength of components subjected to a number of diverse random effects.

Presently, the model includes five effects that typically reduce lifetime strength:

• high temperature

• high-cycle mechanical fatigue

• low-cycle mechanical fatigue

• creep

• thermal fatigue

The MSD model was calibrated for INCONEL 718 by appropriate curve-fitted least squares

linear regression of experimental data. Linear regression of the data for each effect resulted in

estimates for the empirical material constants, as given by the slope of the linear fit. These

estimates, together with ultimate and reference values, were used to calibrate the model

specifically for Inconel 718 [8]. Lifetime material strength results, in the form of cumulative
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distribution functions (CDF's), illustrate the sensitivity of lifetime strength to any one, or a

combination of, the five effects. The mathematical expression for this MSD model is:

[ 1a'AiU - Ai--_-S = 1-I .... (1.2.1)

SO Ai U - Aio j

where, A i, Aiu and mio are the current, ultimate and reference values, respectively, of a

particular effect; a_ is the value of the calibrated empirical material constant for the ith effect

terms of the variables in the model; and S and So are the current and reference values of

material strength. Each term has the property that if the current value equals the ultimate value,

the lifetime strength will be zero. Also, if the current value equals the reference value, the term

equals one and strength is not affected by that value. The product form of equation (1.2.1)

assumes independence between individual effects. This equation may be viewed as a solution

to a separable partial differential equation in the variables with the further limitation or

approximation that a single set of separation constants, a_, can adequately model the material

properties.

The multifactor equation for material strength degradation (MSD) was implemented in

NESSUS using the NZFUNC subroutine that was initially developed for predefined resistance

models[9]. All input from the MSD model is in the NESSUS/PFEM input deck using a

keyword interface consistent with previous versions of NESSUS.

The model is currently set up for five fixed effects and twelve general effects that can be

defined by the user. The fixed effects include: Temperature, High cycle mechanical fatigue,

Low cycle mechanical fatigue, Creep, Thermal fatigue. When expanded for all effects, the

equation is as follows:

[ Tlqr  wr .... t]VINuN]U[AuA] s = Tu ToA  oA L'. to N'u-N_; Au_-A° "

So5 ,u
Temperature HCF LCF Creep Thermal Fatigue General

(1.2.2)

where T is temperature, N is cycles, t is time, and A is a user-defined effect. The lower case

exponents are the empirical material constants for each effect. The subscript, u, refers to an

ultimate value, the subscript, o, is the reference value, and the non-subscripted term is the

current value for the effect.

To increase model sensitivity for the effect, a logarithmic base ten transformation is

introduced. For Inconel 718, all effects except temperature require the logarithmic
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transformation and have the following form.

Z (2

s = SoL_- _)j (1.2.3)

For other materials, the nature of the data will dictate the use of the log transformation.

The effects to be used and the model type (log transformation) are defined in the g-function

definition section of the PFEM input file. Any combination of effects can be selected and any

of the terms can be considered random if desired. The form of the g-function used by

NESSUS is

g = SoI"I[Aiu-Ai] ''', La,u --_o - cr , (1.2.4)

where SO is the reference value of material strength, A4u is the ultimate value of the particular

effect, A,o is the reference value of the particular effect, A_ is the current value of the particular

effect, a_ is the empirical material constant for the particular effect, and c_ is the structural

response as calculated by NESSUS/FEM, i.e. stress. The equation expanded for the two

effects of high temperature and high-cycle mechanical fatigue is shown in equation 1.2.5

below:

q W

z : oLr_--L-_-o]L -Lo-5-6TYo3 ] - o, (1.2.5)

With the implementation of the MSD model, NESSUS can now determine the reliability of a

structural component utilizing its material strength variability. Thus for example, NESSUS

now produces statistical distributions for the component material strength, S, as well as a

statistical distribution of component stress, or.
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1.3 RELIABILITY

Structural reliability calculations can be made using the Material Strength Degradation

(MSD) model combined with the stress output from the FEA model. Structural reliability is the

probability that the strength exceeds the stress as defined by equation 1.3.1 below:

R = P(S>cr) , (1.3.1)

where R is the structural reliability and P(S > c_) is the probability that the strength is greater

than the stress. The von Mises stress term is used in this project since it represents a three-

dimensional state of stress and is considered a good indicator for the onset of mechanical

failure for ductile materials [10]. The equation for Von Mises stress is given below:

o,= (°,-°2 °3)2+(°,_°3)2 ,,2

where a,, ,32 and c33are the principal stresses. These principal stresses are the roots to

the following cubic equation [11]:

2

-- 2 -- 2 --'[z_)(9"O"3 -- (O'x "l" O"y "_ O"Z )O "2 "l"([_x_y 31"(_x_ z "[-(_y(_z "r._.. Ty z

(1.3.3)

2 = o

In short, von Mises stress is a scalar value representing a three-dimensional state of stress.

The distortion-energy theory predicts that yielding will occur whenever the distortion energy

per unit volume equals the distortion energy in the same volume when yielded in a simple

tensile test as shown in equation 1.3.4 below [12].

O" > S_ (1.3.4)

The reliability approach is a departure from the factor of safety approach widely used in

engineering design. Input of the usual physical quantities as either random variables or random

fields has many advantages including:

• probability of failure- quantifies reliability

• sensitivity-identifies important variables

• importance

Using the probabilistic approach, an analysis of the turbopump blade model yielded a

reliability of 0.999. Initially all of the random variables were modeled as normal distributions

and the blade thickness was modeled as a fully correlated random field. Taking the median

NASA/CR--2001-21 I112 7



valueof thestrengthandthedeterministic value of the stress from NESSUS, the factor of

safety is:

S 1.16107E05
N- - = 1.10 (1.3.5)

¢r 1.0554E05

The reliability measure of 0.999 denotes a failure for 1 in every 1000 uses. The factor

of safety, N=I. 10, implies the structure can withstand 1.1 times its nominal load. This may

give the engineer a false sense of security. The factor of safety approach requires engineering

judgement that results from experience.

The structure is also under high cycle fatigue. To this end the Goodman Equation is

used [13] as given by Equation 1.3.6:

0"_ O"m 1
_- - (1.3.6)

S e S,, n'

where ¢rm is the mean stress due to cyclic loading, CYa is the average stress, Sut is the ultimate

strength of the material and Se is the endurance limit of the material. This results in a factor of

safety of 1.11 as shown below.

_ F32.5 ksi
n- L]_ k-_si 105.5 ksi ]-I_ 173 ksi 1.11 (1.3.7)

Reliability has advantages in that it quantifies the uncertainty of material properties and

provides for the driving variables for design. While the reliability method has its advantages, it

is at the expense of being more complex requiring a background in statistics and the

comprehension of terms such as the performance function.

The performance function is a user-defined function. In this particular case, the

performance function is defined as the equation:

Z = S- or, (1.3.8)

where Z is a measure of performance such as stress, strain or displacement, S is the strength

and _ is the yon Mises stress [14]. The strength value resulting from the combined effects of

high cycle fatigue and high temperature was defined previously in the MSD model. The von

Mises stress, is used to compare with material strength and estimate failure or nonfailure.

The limit state is the surface that separates the density space into safe and fail regions

where the performance function is zero. This limit state is termed g, as in the
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following equation:

g(X) = S(X)-cr(X) = 0 , (1.3.9)

where g(X) is the limit state, defined on the domain of the vector of random variables X, S(X)

is the strength and o(X) is the stress. When o and S are independent, i.e. no common random

variables, their two distributions are as shown in Figure 1.3.1. Note that there is some overlap

between the stress and the strength. The region where this overlap occurs is the probability of

failure. For most design cases, attempts are made to minimize this overlap for a smaller

probability of failure.

Within the vector X of equation 1.3.9, there are 13 random variables and 1 random

field. These are further divided into 9 random variables for the MSD model and 5 for the stress

side. The MSD model utilized includes the effects of: High-Cycle Fatigue (HCF) and High

Temperature. The stress side's random variables are the loading, modulus of elasticity,

Poisson's ratio, mass density and the thickness random field. The HCF components are the

ultimate number of cycles, designated number of cycles, reference number of cycles and an

empirical material constant (exponent). The temperature side of the strength includes the

ultimate temperature, designated temperature, reference and an exponent. The remaining

variable is the material's initial strength. These 13 random variables and 1 random field result

in a complex failure hypersurface which is not easy to visualize. Fortunately NESSUS

resolves this problem for the user.

Probability of Failure Where o > S

o S

Stress

Figurc 1.3.1Strengthand StressProbabilityPlot
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For the case of only two random variables included in a structural reliability analysis,

the Joint Probability Density Function (JPDF) can be visualized. The probabilities are contours

that are arranged such that the lowest probability is the biggest ellipse and the highest

probability is the smallest ellipse. Thus the highest probability occurs at the center of the

innermost ellipse in Figure 1.3.2. Recall that the limit state function is where the performance

function equals zero, i.e. g = 0. This limit state function is usually desired to be some distance

away from the location of the highest probability as shown in Figure 1.3.2. The probability

that the structure will fail is upward and to the right and above the performance function.

lowest probability

highest

X_ /_

g

failure

region

g<0

Figure 1.3.2 Limit State Diagram

NASA/CR--2001-21 i I 12 10



Structural reliability is the probability that the structure will not fail. This is given by

the following equation:

Reliability - P(g > O) (1.3.10)

where P is the probability. NESSUS output results yield the probability of failure, p/. In

terms of this failure, the reliability is calculated from equation 1.3.11 below:

Reliability - 1- P(g<0) , (1.3.11)

where P(g<0) is the probability of failure. Thus, the area to the fight of the origin in Figure

1.3.3 is the reliability of the particular structure and the shaded area to the left is the failure

region.

PDF

Rell'ability

Probabilityof Failure

Z

Figure 1.3.3 Overlap of Strength - Stress
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Most Probable Point (MPP)

The Most Probable Point (MPP) is the point on the limit state with the highest joint

probability as shown in Figure 1.3.4. Note that this joint PDF is three-dimensional and is now

centered about the origin. This is due to the Rosenblatt transformation. The Rosenblatt

transformation can be used for correlated random variables and is a transformation whereby

distributions are transformed from one distribution to another [15]. In NESSUS, the

Rosenblatt transformation is impractical because the available data is oRen insufficient to

establish the joint and the conditional probability distributions In this case the usual random

variables are transformed from an original input distribution into a standard normal

distribution. This is where the mean of the distribution is zero and the standard deviation is

one.

2 2

mpp

g=O

Cut volume = P(Z<=0)

Figure 1.3.4 Limit State in u-Space for Two Random Variables
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Beta

As the random variables are transformed into the standard normal distribution, the

resulting distance from the origin to the MPP, termed beta, is defined by equation 1.3.12.

n

= y__(u)_ (1.3.12)
i=1

where the u_ are the transformed random variables in standard normal space at the limit state.

The probability of failure is approximately the value of the joint probability at the MPP as seen

in the equation below:

PI =- dp(fl) = I..I_°,ro_ ,,)<of,(u)du (1.3.13)

wherefu is the joint probability distribution function and gapproxis the approximation of the

limit state g. This approximation of g can be a polynomial, usually either a linear or quadratic

equation.

Sensitivity Factors

The sensitivity factors are a ranking of which random variables "drive" or most

influence the output results, e.g. probability of failure. These are useful in the assessment of

which random variables need to be changed for design optimization.

These sensitivity factors are defined as the direction cosines to the MPP of the input

random variables for NESSUS. The sensitivity factor, o_, is given by equation 1.3.14 below.

I ,l _ (Ogle' (1.3.14)
Cox,)

Og
where c_ is the sensitivity factor, i indexes the random variable number, _ is the gradient of

the limit state with respect to the particular random variable X_, and cr_is the standard deviation

of the ith random variable. When the limit state is taken as a linear approximation, the

following equation holds:

[ ±03 a o + aiu i

i=1O[g(x)]
a,- 03(xi)= 03(x,) ' (1.3.15)

where g is the linear approximation of the limit state, n is the number of random variables, and

ao and a_ are constants determined by Taylor's series expansion NESSUS [16].
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Distribution Types

The lognormal and Weibull distributions are derived from the normal distribution. The

lognormal distribution was calculated using the following equations [17]:

Cx = °'----a-_, (1.3.16)

where C x is the coefficient of variation, o x is the standard deviation and l.tx is the mean from the

normal distribution. Likewise for the median the equation is:

#_ _ux
I_C_ ' (1.3.17)

where is the median of the distribution.

The Weibull distribution was calculated using the following equations:

Ix=(iJ-- -exPl-(iJI x>O,=>0, ,
I_ -- J

where t_ is defined as;

is defined as;

__ -'°''
k/l,)

fl = ,/2x

U +1

and F is defined as the integral;

r(x) = tX-le-tdt
o

(1.3.19)

(1.3.20)

(1.3.21)

Monte Carlo Simulation

Reliability results were calculated using the Advanced Mean Value Method (AMV) and

the well-known Monte Carlo Simulation method. Using the Advanced Mean Value Method

requires several steps: computing sensitivities by perturbing each random variable and

recomputing the response; using the Fast Probability Integration (FPI) to compute the Mean

Value (MV) cumulative distribution function (CDF.) and associated Most Probable Point

(MPP); the response at the predicted MPP for each probability level; and computing the

sensitivities about the predicted MPP. The last two steps are AMV and AMV+ respectively.

Once these last two steps are performed, the run proceeds through FPI to compute the response

at each probability level and new MPP [18]. With the FPI calculated the convergence criteria is
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measured at each probability level. If the response does not converge, the data is run through

the AMV and AMV+ steps until convergence is reached [19].

Monte Carlo Simulation is a more widely accepted method for calculating reliability

results. The method is more robust than AMV+ in that it is independent of the number of

random variables. Monte Carlo Simulation uses random samples from the probability

distributions of each random variable and computes the response. The probability of failure is

determined by counting the number of failures and dividing by the total number of samples.

The method is exact as the number of simulations approaches infinity. The major disadvantage

of this method is the computing time required for large sample sizes. Thus the number of

simulations (samples) must be given careful consideration. In many "quick and dirty"

calculations, a very simple equation for determining the sample size is shown in equation

1.3.22 below [20]:

10
N>-- (1.3.22)

P:

where, N is the number of samples for the Monte Carlo simulation required for the given

probability of failure; p: The Shooman equation gives a more accurate assessment of how

many points are necessary for a given probability of failure. The Shooman equation is that

given by Equation 1.3.23 [20]:

%error = 100._-1[(1-o_)/2]. / l-p/ , (1.3.23)

P/

where (1- o0 is the confidence desired and _-1[(1_o0/2] is the inverse probability of the

confidence divided by two. For calculating the number of points for a 95% confidence the

Shooman equation is as follows:

1- p: ( 200 _ 2N- -- , (1.3.24)
p: \ %error J

where the %error could be some reasonable value, usually between 5% and 20%.
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1.4 TURBOPUMP BLADE AND DATA FILES

Previously, the probabilistic analysis of a single structural member, a MAR-M246

SSME turboptanp blade was undertaken [21]. The finite element model used is a reasonably

realistic representation of the Space Shuttle Main Engine fuel turbopump blade shown below in

Figure 1.4.1.

Platform Trailing edge

Firtree or root
-4

.x ....... Airfoil pressure side

z
I

Airfoil suction side

Leading edge

Figure 1.4.1 Drawing of the Physical Turbopump Blade

Note the overall shape of the structure that was modeled. It has a curved shape toward

the tip of the aerodynamic surface and a less noticeable twist along the length of the turbopump

blade. The various parts of the blade should be noted. They are the firtree root, the platform,

the trailing edge, the leading edge, the airfoil suction side and the airfoil pressure side. The

firtree root, sometimes called just the root attaches the turbopump blade to the rotor. Above

the root is the platform. It separates the root and nonaerodynamic parts of the rotor from the

fluid flow of the blade. Important to the fluid flow are the leading edge and the trailing edge.

These parts are where the fluid flows toward and away from the blade, respectively. As

mentioned before, this blade has curvature like a wing. Hence, to one side of the blade there is

an area of high pressure and low velocity relative to an area with low pressure and high

velocity. The high pressure side is called the airfoil pressure side and the low pressure side is

called the airfoil suction side. At the right side, note that the thickness of the blade starts to

decrease from the leading edge to the trailing edge. This is an important attribute to keep in

mind when analyzing the resulting stresses. Figure 1.4.2 shows the boundary conditions and

forces on the blade.
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Note that on the left-hand side of the blade there is a cantilever on the center node

surrounded by trolleys on the four outer nodes. These outer nodes are comtrained to move

transversely in the Z-direction so that the blade is allowed to twist within its attachment on the

rotor as the torque of the aerodynamic force loosens the roots fit. Other forces such as

pressure and thermal gradients are neglected. This blade is under a centrifugal load due to a

rotational speed of 37,000 rpm according to Milton L. Littlefield of Pratt and Witney, "Mission

conditions that include shaft speeds of 37,000 rpm, temperature extremes ranging fi'om minus

265 to 2,300 °F and pressures over 8,000 psi place high stresses on the hardware"[22].

The finite element model of the SSME turbopump blade consists of 55 nodes and 40

four-noded isoparametric elements. Since this is a relatively thin blade, the elements are shell

elements. These elements consist of 4 nodes and their corresponding nodal thicknesses

composed of 5 layers.

Z

Figure 1.4.2

T
0.69 "

Drawing of the Blades Constraints and Forces
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Random Variable Inputs for Stress

Table 1.4.1 lists the Inconel 718 random variable inputs for the stress calculations.

Inconel 718 is a precipitation-hardenable nickel-chromium alloy containing significant amounts

of iron, niobium and molybdenum along with lesser amounts of aluminum and titanium.

Inconel 718 has excellent creep-rupture strength with properties of high strength, corrosion-

resistant material suitable for temperatures from -423 to 1300 °F [23].

These random variables include the modulus of elasticity [24], Poisson's ratio, mass

density and centrifugal loading. The random variables above have defined means and standard

deviations. The coefficients of variation are initially assumed to be 5% as shown by the

equation 1.4.1. Initially, the distribution type for every random variable was assumed to be

normal.

Std.dev. 1.240E03
COV = = (1.4.1)

mean 2.480E04

RANDOM

VARIABLE

MODULUS OF

ELASTICITY

Table 1.4.1 Random Inputs for Stress

FINITE ELEMENT RANDOM VARIABLES

NAME MEAN STANDARD

BLADE THICKNESS

EMOD 2.48E04 (ksi)

THICK

DEVIATION

1.24E03 (ksi)

DISTRIBUTION

TYPE

NORMAL

POISSON' S RATIO PMOD 0.271 0.01355 NORMAL

MASS DENSITY DMOD 0.296 (Ibm)/in 3 0.0148 (Ibm)/in 3 NORMAL

CENTRIFUGAL DLOAD 37,000 (rpm) 1850 (rpm) NORMAL
LOADING

0.24" - 0.097" 0.012" - 0.0005" NORMAL
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Correlated Random Fields

The nodal blade thicknesses were input as a random field. Initially this was done

initially to compare to the previously run problem [21]. Two different random field analysis

were conducted: a fully correlated random field and a partially correlated (95% uncertainty

retained). The partially correlated random fields are those where the variance-covariance matrix

will be densely populated but diagonally dominant. The correlation coefficient is defined by

the following exponential decay equation:

Ix,-xjl
Po = e t , (1.4.2)

where P0 is the correlation coefficient, I is the characteristic length, Xa and Xj are the

coordinates of point i andj respectively. The characteristic length is estimated measured or

related to other physical (measurable) characteristics. This makes for the following variance-

covariance matrix:

Cxix, = pij_x G'xj , (1.4.3)

where Pij is the correlation coefficient, C_x_and axj are the standard deviations of the field

variable X at points i and j respectively. One item to note is that the transformed random

variables are the eigenvectors of the variance-covariance matrix. The associated eigenvalues

may be interpreted as the square of the standard deviation of the transformed variables.

For this model, the characteristic length is 1 inch. Since the length of the blade is 1.25

inches and a mesh size is 0.1 inch by 0.2 inch, the characteristic length of 1 inch is plausible.

The uncertainty retention measure determines how many quantities need to be retained to

capture the randomness of the structure and to shorten the computational time. This means that

for small standard deviations, these uncertainties may be neglected to substantially decrease the

number of random variables. For certain strongly correlated random fields it is not uncommon

that only a few of the significant random variables account for the majority of the uncertainties

in the random field. Inside of NESSUS this retained uncertainty is an input to NESSUS/PRE.

The fully correlated random fields are those where the variance-covariance matrix is

singular and fully populated. The correlation coefficient p_j is equal to 1, thus having the

entries of the variance-covariance matrix equal to the equation:

Cx, xj = Crx,Crxj , (1.4.4)

where Crx_and O'xjare the standard deviations of the field variable X at points i and j

respectively [25].
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Random Variable Inputs for Strength

The random variable inputs for strength are listed in Table 1.4.2. Note that these

random variables consist of three different types: High-Cycle Fatigue (HCF), High

Temperature and Strength. As stated previously, the random variables for HCF include

ultimate number of cycles, designated number of cycles, reference number of cycles and the

empirical material constant. Likewise, variables for the effect of high temperature include the

ultimate temperature, current temperature, reference temperature and empirical material constant

for temperature. The last random variable is the initial strength. Note that like the random

variables for stress, the standard deviation is 5% of the mean and the distribution type was

initially assumed to be normal.

A sample input file for NESSUS is given in the Table 1.4.3. It starts with a keyword

called *PFEM which stands for Probabilistic Finite Element Method. The next major keyword

is the *ZDEFINE which defines the definition of the performance function.

*EXPLICITMODEL defines the input of random variables for the MSD model. The keyword

*ZFUNCT 3 0 defines which reliability model to use, with 3 corresponding to the MSD

model. Below this is the *MSDM input, which is for the Material Strength Degradation model.

The particular effects and their input are placed here. The linear or log type is also designated

in the MSDM section. The keyword *COMPUTATIONALMETHOD designates the number

of random variables on the stress side. They are given a random variable number and name

designation below the *RVDEFINE keyword. The COOR is the thickness change that is

applied to the coordinates. The first number is an integer defining the nodal number.

Following that is the x, y, z and thickness coordinates. Note that the x, y, and z coordinates

are zero. This means that the only change applied to the coordinates is a change in thickness.
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Table 1.4.2 Random Inputs for Strength
i

PROBABILISTIC RANDOM VARIABLES
III I II

TYPE

HCF

HCF

HCF

HCF

High
Temperature

High
Temperature

High
Temperature

Strength

RANDOM

VARIABLE

ULTIMATE

NUMBER OF

CYCLES

DESIGNATED

NUMBER OF
CYCLES

REFERENCE

NUMBER OF

CYCLES

EMPIRICAL

MATERIAL
CONSTANT

ULTIMATE
TEMPERATURE

VALUE

CURRENT

TEMPERATURE

REFERENCE

TEMPERATURE

EMPIRICAL
MATERIAL

CONSTANT

INITIAL

STRENGTH

SYMBOL

III

NU

N

NO

W

TU

T

¢

TO

QQ

so_i)

MEAN

1.0El0

2.5_5

0.25

0.141

2369 oF

1000 °F

75 °F

0.2422

1.480E5

STANDARD

DEVIATION

5.0_8

1.25E04

0.0125

0.00705

118.45

50.0

3.75

0.01211

7.40E03

I I I

DISTRIBUTION

TYPE

NORMAL

NORMAL

NORMAL

NORMAL

NORMAL

NORMAL

NORMAL

NORMAL

NORMAL

NASA/CR--2001-211112 22



Table 1.4.3 Sample NESSUS Input File

C ssmehcf718nrvla, dat

* PFEM

C

C Z-FUNCTION

C

* ZFDEFINE

* EXPLICITMODEL 9

6, 7, 8, 9, i0, ii, 12, 13, 14

*ZFUNCT 3 0

* MSDM SO

C Definitions of input for the Random

TEMP LINEAR TU T TO QQ

HCF LOG NUN NO W

END

* COMPUTATIONALMETHOD 1 5

12345 C

* END

C RANDOM

* REDEFINE

* DEFINE 1

The input file for NESSUS

C Variables of the Material Strength

C Degradation model.

C Random Variable memory allocation for the

stress side.

VARIABLE DEFINITIONS C Defines the random variables.

C Defines the first random variable, a random field.

C The random field is run through the NESSUS

C preprocessor, NESSUS/PRE.

C While this is in the form of a coordinate input deck, it has zeros in

C the x, y and z coordinates. The only nonzero entry is the thickness.

C This is the change that is applied to the coordinates in the blade.

6. 8249E-03 NORMAL

0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00

C The second random variable.

1.24E06 NORMAL

THICKI

1. 3650E-01

COOR

1

2

3

4

5

6

7

8

9

*DEFINE 2

DMOD

2.48E07

PROP 75

I 40 0

*DEFINE 3

DMOD

0.271 0.01355

PROP 75

1 40 0 0 I

*DEFINE 4

DMOD

i 0 0 0

NORMAL

0 0

1.7583E+00

1 7583E+00

1 7583E+00

1 7583E+00

1 7583E+00

8 0001E-01

1 4446E+00

1 6685E+00

1 7490E+00

2 is its random number.
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Table 1.4.4 contains an excerpt from the .mov output file. This file includes a

summary of the results from the probabilistic analysis of the blade. The first line in Table

1.4.4 shows probability of failure as 0.00022074 corresponding to the limit state of Z=0 at

-3.5140 standard deviations from the mean. Below this line is a list of the random variable

names, their values at the MPP, their corresponding deviations from their means and their

sensitivity factors. Finally, the bottom line is a reprint from the top line with additional decimal

places showing.

Table 1.4.4 Sample NESSUS Output File

C Filename: ssmehcf718nrvla.mov A Sample output file from NESSUS.
Response/Probability level: 1

Level Z-value u(std, normal) Probability

1 0.000000E+00 -3.51401 0.000220740

Most probable point (MPP) or design point

Level i: (Z-value = 0.00000E+00, u = -3.5140, Probability =
0.000220740)

R.V. name X-value

THICK1 0.1309896E+00

EMOD 0.2479084E+08

PMOD 0.2706960E+00

DMOD 0.8082256E-03

DLOAD 0.4402004E+04

NU 0.9994149E+I0

N 0.2502581E+06

NO 0.2498878E+00

W 0.1422799E+00

SO 0.1355315E+06

TU 0.2335924E+04

T 0.I014301E+04

TO 0.7495304E+02

QQ 0.2446292E+00

CDF RESULTS

Z U

0.00000000E+00 -0.35140116E+01

Std. Dev. from Mean

-0.807400

-0.007384

-0.022434

1.101191

2.722211

-0.011701

0 020652

-0 008976

0 181542

-i 684931

-0 279243

0 286011

-0 012522

0.200592

Sensitivity factor
-0.229766

-0.002101

-0.006384

0.313371

0.774673

-0.003330

0.005877

-0.002554

0.051662

-0.479489

-0.079465

0.081392

-0.003564

0.057084

PROBABILITY ITER. NO.

0.22074004E-03 8

The mov output from NESSUS contains several important results. There is a title line

followed by a description of what kind of output. The Level term is the level as defined by the

user in the FPI input or is a predefined number of levels that NESSUS automatically chooses

for a full CDF analysis. The Z-value is the performance level, followed by its location in

standard normal coordinates and finally the probability of having that performance level.

Following that is the MPP and another line containing the Z-value, the standard normal value

and the probability. Next there is a line defining the random variable name, the x-value or the

value of that particular random variable in normal space as given in the input file, the standard

deviation of that x-value from it mean and finally its sensitivity factor. Finally, the last line

below all the random variables is the same as the top of the input file except for the inclusion of

more decimal places.
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.. 1.5 RELIABILITY RESULTS

AMV+ and Monte Carlo Simulation Results

Table 1.5.1 compares the reliability results from the AMV+ technique with the well

known Monte Carlo Simulation method. Percent differences between the two methods were

calculated. The number of samples for the Monte Carlo Simulation were increased from

50,000 and 200,000 sample points. The run times varied from one day of CPU time for

50,000 sample points, to six days for 200,000 sample points.

Case 1 was for a fully correlated random field and 50,000 sample points. The

probability of failure calculated for Monte Carlo was 2.60E-04 while the probability of failure

from the AMV+ method was 2.207E-04. The percent difference was calculated to be 15.1%.

Increasing the number of samples to 200,000 as shown in Case 3 reduced the difference to

7.7%. This is in agreement with the reduction in percent error given by the Shooman equation

from approximately 60% to 30% error, roughly one half.

The additional number of samples increased the Monte Carlo run time from one day to

six days. The AMV+ solution ran in 3 to 4 minutes, thus giving a substantial savings in

processor time. With almost instant feedback fi_om the AMV+ and accuracy comparable to that

of Monte Carlo, the AMV+ method offers the ability to examine more variables in a given

amount of time.

Case 2 was for the blade thickness modeled as a partially correlated random field and

50,000 sample points. Monte Carlo resulted in a probability of failure of 3.40E-04, while

AMV+ yielded a probability of failure of 2.207E-04. The percent difference between these two

values was 33.2.%. As before, this difference was decreased by increasing the number of

sample points used in the Monte Carlo Simulation from 50,000 to 200,000 sample points as

seen in Case 4. The percent difference decreased from 33.2% to 14.7%. Thus, the AMV+

method yielded comparable results with much greater efficiencies than the Monte Carlo

method.

Table 1.5.1 Comparison of Probabilities of Failure and Reliability

CAIN

Number
Blade thickness

uncertainty

Number of

Samp(es
for Monte

Cado

Probability of
Failure

(Monte Caao)
Based on

MC

Probability
of Failure

(AMY+)

Re4iab/lity
Based on

AMV+

%Error
(Shooman)

Companson
%Difference

AMV+ vs. MC

1 fullycorrelated
random _eld 50,000 2.60E-04 0.99974 2.207E-04 0.99978 60.19 15.1%

95% uncertantty
retained,partially
comslated 50,000 3.40E-04 0.9gg66 4.530E-04 0.99955 42.01 33.2%

]1f._ oo,_t.a
randomfield 200.000 2.05E-04 0.99980 2.207E-04 0.99978 30.10 7.7%

E)5%uncertan_
retained,partially

;corre_k)d 200,000 3.95E-04 0.99961 0.00045 0.99955 22.31 14.7%
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Reliablli_ Results Overlap

Figure 1.5.1 is a plot of the probability density functions (PDF's) for both the resulting

strength and stross distributions. First only the MSD model was run and then only the stress

side of the SSME fuel turbopump turbopump blade was run. Next, the numerical dorivatives

of the MSD side wore calculated and plotted. Finally the numorical derivatives of the stress side

wore calculated and plotted. The derivatives are given by equations 1.5.1 and 1.5.2, where the

p's are the cumulative probabilities, the S's are the strengths and the o's are the stresses.

dp _ Pl-Po

_-&'

dp Pl -Po

d_ aj - _o

(l.5.1)

(1.5.2)

The overlap of these two PDF's in Figure 1.5.1 is the region where the probability of failure

exists.

Overlap of Stress and Strength Plots for

Inconel 718 @1000 OF for Blade Thickness
as a Fully Correlated Random Field

1.0e-4

8.0e-5

O.

2.0e-5

0.0

2O

Strength (ksi)_
m _ Stress ( ksi )

40 60 80 100 120 140

Stress, Strength ( ksi )

160

Figure 1.5.1 Overlap of the Strength and Stress Plots
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Reliability results for Inconel 718 at a temperature of 10(30 °F are shown in

Figure 1.5.2. It shows the cumulative distribution functions CDF's for the cases of fully

correlated and partially correlated (95% uncertainty retained) random fields. This overlay on

normal probability paper shows that there is very little difference between the probability

results obtained for a fully correlated random field and those for a partially correlated random

field. In the region where the blade fails, i.e. where (strength - stress) = 0, the shift is very

minor. The probabilities for the fully correlated and the partially correlated (95% uncertainty

retained) fields are essentially fight on top of each other.

-_
°_

.O
O

ft.

99.99*/*

99.9*/*

gOD/,

79%

50%

300

10°/o

1%

0.1%

0.01%

0.001%

Reliability for Inconel 718 @ 1000 °F

Single Fully correlated and 95% _nty Retained,

Partially oorrelated _ Fields

-_- 950 Un:er_nty Retained

I t I | I I

-20

Figure 1.5.2

0 20 40 60 80 100

Strength- ess ( )

Reliability Plots on Normal Probability Paper
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1.6 SENSITIVITY FACTOR RESULTS

Table 1.6.1 states the sensitivity factors at failure for the SSME fuelpump turbopump

blade with the thickness modeled as both a fully correlated random field and a partially

correlated random field with 95% of the uncertainty retained.

Note that the order ranking is for the fully correlated random field. For both fully and partially

correlated random fields the centrifugal loading (DLOAD) has the highest sensitivity factor,

followed by the initial strength (SO). Mass density (DMOD) and thickness (THICK) are third

and fourth depending on correlation. The next four random variables, current temperature (T),

the ultimate temperature (TU), the temperature empirical material constant (QQ) and the HCF

empirical material constant (W), have sensitivity factors that are an order of magnitude smaller

and are considered insignificant in comparison with other variables. The last six random

variables are smaller by two orders of magnitude and are dearly insignificant in influencing the

output.

Table 1.6.1 Ordered Sensitivity Factors

Random Variables

centrifugal loading

inital sVength

Name

DLOAD

SO

mass density DMOD

,tdckness THICK

:urrent temperature T

Jlimale temperature TU

ampidcal constant QQ

ampidcal constant W

Poisson's ratio PMOD

Sensitivity

Factor, r,

Fully Correlated

!0.7747

Partially
Correlated 95%

Uncertainity
Retained

0.7366

Partially
Correlated 80%

Uncertainity
Retained

0.7435

0.4795 0.4452 0.4513

0.3134 0.2938 0.2968

0.2298 0.3889 0.3722

0.0814 0.0760 10.0770

0.0795 0.0740 0.0749

0.0571 0.0534 0.0540

0.0517 0.0860 0.0491

0.0064 0.0040 0.0041

current numbe¢ of cycles N 0.0059 0.0056 0.0056

reference tempemlure TO 0.0038 0.0033 0.0034

dtimate number of cydes NU 0.0033 0.0032 0.0032

reference number of cycles NO 0.0026 0.0049 0.0024

modulus of elastidty EMOD 0.0021 0.0019 0.0041
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Figure 1.6.1 below, is a graphical representation of the sensitivity factors results.

What is important to note is that the four random variables with the highest sensitivity factors

are the same for both the fully correlated and the partially correlated random fields. Therefore,

the assumption of a fully correlated blade thickness is justified for future analysis.

1.0

0.8

Sensitivity Factors for the Random Variables

1 Fully Correlated Random Field ]
95% Uncertainity Retained, Partially Correlated Random Field J

0.6
._>
u}
I--
(D

0.4

0.2

0.0
THICK PMOD DLOAD N W TU TO

EMOD DMOD NU NO SO T QQ
Variables

Figure 1.6.1 Sensitivity Factors for the Random Variables
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1.7 DISTRIBUTION TYPE ANALYSIS

The type of distribution for each random variable is based on experimental data, which

is frequently lacking. There is some uncertainty in choosing the type of distribution to most

accurately represent the data. Decisions are often made on the basis of tradition or experience.

Choices are often controversial. However, given the mean and standard deviation, the

following guidelines exist[ 16].

• Normal: Useful ifCOV is "small", say (less than. 10%)

Tolerances

Modulus of elasticity

Poisson's ratio

Various material properties

Lognormal: Good "default" distribution. Can be used for any variable. Plays

important role in probabilistic design.

Cycles to failure in fatigue

- Material strengths

- Loading variables

Weibull: Very popular distribution, but probably overused.

- Fatigue

- Material strength

- Time to failure in reliability analysis

Long-term distribution of stress ranges in fatigue
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To see the effect of distribution type on the output, several analyses were conducted.

Initially, the distribution types for all random variables were assumed to be normal. Figure

1.7.1 illustrates the effect distribution type had on the probability.

.O
t_

O

rl

Probability Density Plot for The Loading (DLOAD)

5e-4

5e-4

4e-4

4e-4

3e-4

3e-4

2e-4

le-4

le-4

5e-5

0

_ Normal Distribution: I_= 37,000 rpm o = 1850
Weibull: a = 25.4 f] = 37,802, y = 42,000 rpm
Iognormal 0.135%= 33,439(rpm) 99.86%=40,837 (rpm)

I I ! ! I

25 30 35 40 45 50

RPM (Thousands)

Figure 1.7.1 Probability Density Plot for the Centrifugal Loading (DLOAD)
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Effect of Distribution Type on Probability Results

Table 1.7.1 summarizes the probability results for changes in distribution types for

both fully and partially correlated random fields. Note that the reliability did not change

significantly for a change in distribution type except for the change in distribution to Weibull

for the centrifugal load. It has a reliability of 0.9999 or the so-called 4-9's of reliability.

Table 1.7.1 Effect of Distribution on Probabilities of Failure

Blade thickness

uncertainty

1 fully correlated
random field
1 fully correlated
random field
1 fully correlated
random field
1 fully correlated
random field
1 fully correlated
random field

1 fully correlated
random field
1 fully correlated
random field

1 fully correlated
random field
1 fully correlated
random field

Random

Variable

Changed

Distribution for

Random

Variable

Changed

Probability
of Failure

(AMV+)

Reliability
Based on

AMV+

none no change 2.207E-04 0.999779

Load Iognormal 3.590E-04 0.999641

Load Weibull 1.386E-05 0.999986

Iognormal 1.979E-04

Weibull

Strength 0.999802

Thickness

Strength Weibull 5.678E-04 0.999432

Density Iognormal 2.286E-04 0.999771

Density Weibull 2.203E-04 0.999780

Thickness Iognormal 2.191E-04 0.999781

2.384E-04 0.999762
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Effect of Distribution Type on Sensitivity Factors

Initially, all analysis were performed with the 13 random variables and the thickness

random field assumed to have normal or Gaussian distributions. Then the distribution type for

one variable at a time was changed from the initial normal to a lognormal and then to a Weibull

distribution.

1) Centrifugal Loading (DLOAD)

Figure 1.7.2 illustrates the effect of distribution type on the centrifugal loading

(DLOAD) random variable. Changing the distribution type to the lognormal distribution

changed the sensitivity factors only nominally. The order of the highest to lowest of the four

"significant" sensitivity factors did not change.

However, a change in distribution type to Weibull resulted in a change in both the

magnitude and the order of the "significant" sensitivity factors. The order of the first two

factors, strength (SO) and centrifugal loading (DLOAD), changed. The magnitude of the

"significant" sensitivity factors increased from 31.5% to 43.6 % with the exception of the

loading variable (DLOAD) which decreased from 0.7968 to 0.5396, a 32.3% decrease. This

was the result of the shift in the Weibull distribution to the right and as was noted before,

Weibull tends to be a better distribution for material strength.
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Figure 1.7.2 Effect of Distribution on Loading (DLOAD)
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2) Strength (SO)

Figure 1.7.3 illustrates the effect of distribution type on the strength (SO) random

variable. Changing the distribution type to the lognormal changed the sensitivity factors only

nominally. The order of the highest to the lowest of the four "significant" sensitivity factors did

not change. However, a change in distribution type to Weibull resulted in a change in both the

magnitude and the order of the "significant" sensitivity factors. The order of the first two

factors, strength (SO) and centrifugal loading (DLOAD), changed. The magnitude of the

"significant" sensitivity factors decreased from 20.2% to 24.3%. With exception of the initial

strength variable (SO) which increased from 0.4566 to 0.73443, a substantial 60.8 % increase.
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Figure 1.7.3 Effect of Distribution on Strength (SO)
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3) Density (DMOD)

Figure 1.7.4 illustrates the effect of distribution type on the mass density (DMOD)

random variable. Changing the distribution type to the lognormal distribution changed the

sensitivity factors only nominally. The order of the highest to the lowest of the four

"significant" sensitivity factors did not change. Changing the distribution type to Weibull

resulted in a nominal change in the sensitivity factors. Most of the "significant" sensitivity

factors increased slightly from 3.9% to 5.2%. Only the centrifugal loading decreased by

2.8%.

Effect of Distribution on Density ( DMOD )
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Figure 1.7.4 Effect of Distribution on Density (DMOD)
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4) Thickness (THICK)

The final variable tested for distribution type sensitivity was the blade thickness random

field. Figure 1.7.5 illustrates the effect of distribution type on the blade thickness. Changing

the distribution type to the lognormal distribution changed the sensitivity factors only

nominally. The order of the highest to lowest of the four "significant" sensitivity factors did

not change. A change in distribution type to Weibull, however resulted in changes in the

"significant" sensitivity factors varied from a 4.3% decrease to a 3.4% increase. Only for the

blade thickness (THICK) did the magnitude increase from 0.2128 to 0.2812, a 32.5%

increase.

The selection of distribution type does affect the sensitivity factors of the centrifugal

loading and initial strength. The choice of Weibull for these two random variables increases

the initial strength. This result was supported by the guidelines given in the beginning of this

section.
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Figure 1.7.5 Effect of Distribution on Thickness (THICK)
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1.8 CONCLUSIONS

In this paper, a probabilistic structural analysis of an SSME turbopump blade utilizing

the program NESSUS is reported. First, probabilistic analysis yielded a statistical distribution

for the critical von Mises stresses at the blade root due to uncertainty in the following variables:

Blade thickness, Young's modulus, Poisson's ratio and mass density. Then NESSUS, with

the newly implemented MSD model calibrated for Inconel 718 yielded a distribution of the

material strength for the combination of high temperature (1000 °F) and high-cycle fatigue

effects. With both stress and strength variabilities quantified, the structural reliability of the

turbopump blade was determined using both the AMV+ and Monte Carlo Simulation methods.

A comparison of the probability results obtained using the AMV + method to the well

known and accepted Monte Carlo Simulation method yielded a percent difference of 14.7% for

a partially correlated random field thickness and a percent difference of 7.7% for a fully

correlated random field thickness. However, the corresponding 200,000 sample points used

for the Monte Carlo Simulation method required six days of computational time versus three to

four minutes for the AMV+ computation. Thus, the AMV+ method yielded accurate results

with much greater efficiency.

An important advantage of the reliability approach over the factor of safety approach is

the ability to assess which random variables contribute most to the variability of the overall

system. Sensitivity factors provided this insight which can be used for design optimization.

Sensitivity factor results showed centrifugal loading and initial strength to be the most

significant random variables for both a fully correlated and a partially correlated random field

thickness. Mass density and thickness were third and fourth depending on correlation. The

remaining ten random variables were one to two orders of magnitude less and therefore

assumed insignificant in influencing the response.

Reliability results and sensitivity factor results varied only slightly for a difference in

random field thickness correlation. Hence, only a few of the random variables comprising the

random field thickness are significant and account for the majority of the uncertainties in the

random field. Thus, the assumption of a fully correlated blade thickness will not decrease the

accuracy of results and is justified for future analysis.

The effects of distribution type on both reliability and sensitivity factor results were

studied. In both cases, a change in distribution from Gaussian to Lognormal resulted in only

nominal changes. However, the change in distribution type from Gaussian to Weibull resulted

in an increase in reliability for the centrifugal load variable from 0.99779 to 0.999986 or the

so-called 4-9's of reliability. Also, changing distributions to Weibull resulted in a change in

both the magnitude and the order of the 'significant" sensitivity factors. Changing the loading

NASA/CR--2001-211 112 39



and strength variables' distributions to Weibull swapped the order of the first two sensitivity

factors. A Weibull distribution for strength (SO) increased the magnitude of its strength

sensitivity factor from 0.4566 to 0.73443, a substantial 60.8% increase.
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2.0 EDUCATION

2.1 INTEGRATION OF RESEARCH AND EDUCATION OBJECTIVES

It is well understood that when research is carried out in an academic setting that

additional education benefits may occur beyond simply completing the research and delivering

the results to the funding agency. These benefits do not automatically occur, but have a higher

probability of occurring if the project Principal Investigator incorporates education objectives

into the project and designs a carefully thought-out plan to achieve them. NASA and other

agencies recognize this potentially effective strategy and have recently begun to request that

proposals integrate within a single grant both research and education objectives. This two year

NASA/UTSA Partnership Award is an example of such a project.

A short-term education objective carried out during this Partnership Award was to

expose undergraduate students to a NASA project in the hopes of encouraging them to obtain

an advanced degree. To this end, undergraduate and graduate students were supported in

faculty supervised research. Mr. Cody Godines was identified as a good and promising

undergraduate student in mechanical engineering. He was recruited to join the first year

Partnership Award project and was subsequently hired as an Undergraduate Research

Assistant. As a result of working on the project he expressed an interest in continuing his

education at the graduate level. He graduated in December 1998 with a BS in Mechanical

Engineering and enrolled as a graduate engineering student during the second year of this

grant.

2.2 1998 AND 1999 SUMMER COURSES

One long-term education objective of this project was to introduce undergraduate

engineering students to probabilistic structural analysis and reliability via NESSUS. ME 4953

Special Studies in Mechanical Engineering: Finite Element Applications in Solid Mechanics and

Design, a FEM structural applications course with an introduction to NESSUS was conducted

during the 1998 and 1999 summer semesters. These courses attracted over 65 mechanical

engineering students. Approximately one third of the 65 students who completed these courses

were minority students.

A unique aspect of the course is that it was team taught. The instructor of record and

lead laboratory instructor for the 1998 summer course was Ms. Callie C. Bast. Dr. Lola Boyce

was the course lecturer and Mr. Mark T. Jurena was the assistant laboratory instructor. The

laboratory instructors were budgeted from grant funds. Without the Partnership Award funds,
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Ms. Bast would have had no assistance with the course and the quality of the course would

have suffered.

The instructor of record for the 1999 summer course was Dr. Randall D. Manteufel.

Ms. Callie C. Bast and Mr. Cody Godines were the laboratory instructors. All three

instructors for this summer course were supported by grant funds, and the course would not

have been offered if not for this Partnership Award. In addition, this grant funded one

engineer from SwRI, Mr. David Riha, to present guest lectures and assist with the computer

laboratory portions of the summer courses.

Both the 1998 and the 1999 summer courses consisted of a significant laboratory

component utilizing student-centered learning activities. Student-centered learning includes

laboratory-type assignments and projects on UNIX workstations wherein the students must

directly and actively participate. This is in contrast to the lecture-type format wherein the

learning is professor-centered and students participate via passive listening. This type of

experiment in student-centered learning is receiving wide attention in Schools and Colleges of

Engineering in the United States. Syllabi for both summer courses are provided in Appendix I.

2.3 NESSUS STUDENT USER'S MANUAL

A NESSUS Students User's Manual was initiated during the first year of this

Partnership Award and completed during the second year. It includes a brief overview of the

program, explanations of the minimum number of NESSUS keywords necessary to work

laboratory example problems, explanation of output files and a set of example

problems/assignments drawn from structural analysis and reliability applications. This manual

was used in both summer courses and is planned to be used in the follow-on courses scheduled

for Spring 2000 and Summer 2000. This student manual is provided in Appendix II.
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3.0 ACCOMPLISHMENTS

The goal of this NASA Partnership Award was to advance innovative research and

education objectives in theoretical and computational probabilistic structural analysis,

reliability, and life prediction methods for improved aerospace and aircraft propulsion system

components. This grant resulted in significant accomplishments in research and education, and

the enhancement of UTSA's engineering research environment. It allowed four UTSA

Mechanical Engineering students; Mr. Mark T. Jurena, Mr. Cody Godines, Mr. Henock Perez

and Mr. Ricardo Ramirez to work directly with the principal investigator, Ms. Callie C. Bast,

providing them with a unique research experience that otherwise would not have been possible

without this grant.

3.1 ACCOMPLISHMENTS: RESEARCH

Probabilistic structural analysis and reliability methods support the specific needs

within the Aeronautics and Space Transportation Technology Enterprise by contributing to the

development of a next-generation design tool that promises to improve the safety and reliability

of both civil aviation and reusable space launch vehicles. For example, an enhanced NESSUS

code is now available to assist in the design of the reusable Space Shuttle Main Engine (SSME)

through the calculation of the reliability of turbopump blades. Thus, it is now possible to

consider future engine designs based upon target reliabilities through a practical next-generation

design tool.

NE$SUS Enhancement, Verification and Evaluation

In order to provide NESSUS with the capability of determining the reliability of a

structural component utilizing its material strength variability, the MSD model (supported by

PROMISS, a probabilistic material strength degradation program developed by NASA Lewis

Research Center with UTSA) was implemented in NESSUS in year 1 by SwRI, whom is

responsible for maintaining the code. Thus, they assured that the new capabilities of NESSUS

were fully integrated into the code and that they were compatible with previous capabilities.

Initial verification of the enhanced NESSUS code (version 6.2), conducted in year 1, included

two MSD model effects: high cycle mechanical fatigue and high temperature. The cumulative

distribution functions (c.d.f.s) of lifetime strength were calculated using both PROMISS and

NESSUS. Agreement of results was good in the lower tail but differed in the upper tail.

Discrepancies were postulated to possibly be due to the difference in random number

generators used in the two codes. It was determined that this phenomenon would be

investigated in the proposed second-year continuation of this Partnership Award. Upon further
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investigation in year 2, a sampling bias in the PROMISS code was found. The same starting

seed was set for sampling each random variable. This bias was easily corrected in the

PROMISS code. Verification of the enhanced NESSUS code was then completed.

During year 2, this enhanced version of NESSUS was exercised and evaluated through

a reliability analysis of an SSME turbopump blade (see section 1 of this report). This effort

resulted in a thesis for one of the students supported on this grant

Also in year 2, convergence criteria were improved for the most probable point based

methods (MPP) in NESSUS, resulting in a new enhanced NESSUS code, version 6.3 (see

Appendix III, SwRI Final Report). Southwest Research Institute also provided UTSA

researchers and students with technical assistance in using the NESSUS code. Mr. David

Riha, provided guest lectures and assisted with the computer laboratory for both the 1998 and

1999 summer courses. The complete second year NESSUS Enhancement and Technology

Support Final Report is provided in Appendix III of this report.
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3.2 ACCOMPLISHMENTS: EDUCATION

The introduction of undergraduate students to probabilistic finite element analysis

methods was achieved through a UTSA summer course, ME 4953 Special Studies in

Mechanical Engineering: Finite Element Applications in Solid Mechanics and Design. This

FEM structural applications course with an introduction to NESSUS was conducted during the

1998 and 1999 summers. Over 65 mechanical engineering students enrolled for this summer

course. Students successfully completing it received three semester-hours of credit for a

senior-level technical elective. A large number of the students who completed the course were

minority students.

A NESSUS Student User's Manual was initiated in Year 1 and completed in Year 2.

This manual will provide guidance in using NESSUS for future courses and help insure the

continuation of probabilistic finite element analysis courses at UTSA.

3.3 STUDENT ACHIEVEMENTS

A graduate student, Mr. Mark Jurena, was recruited in the second-year continuation of

this Partnership Award to complete his Master of Science in Mechanical Engineering degree.

Supported by this Partnership Award, his thesis topic directly related to the research objectives

of this grant. He presented his thesis "work in progress" at the AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics, and Materials (SDM) Conference last April in St. Louis,

Missouri. Having concluded his research, he presented his research results in his thesis

entitled "Structural Reliabilty Using Finite Element Analysis And A Probabilistic Material

Strength Degradation Model", and successfully completed his MSME degree in August, 1999.

An undergraduate student, Mr. Cody Godines, was recruited in Year 1 of this

Partnership Award as an Undergraduate Research Assistant. He earned his Bachelor of

Science in Mechanical Engineering last December. While supported by this grant, Mr.

Godines worked on a probabilistic finite element analysis of a beam and presented his

NESSUS project at a NASA GRC-sponsored HBCU/HSU (Hispanic-Serving University)

Research Conference in April, 1999. His conference paper is included in Appendix IV of this

report. During this time, he became interested in going to graduate school. He enrolled as a

graduate student in Spring 1999. Mr. Godines plans to complete his MSME degree in 2001

under the guidance of Dr. Randall Manteufel and the support of a 1999 Partnership Award for

Innovative and Unique Education and Research Projects.
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The University of Texas at San Antonio

Syllabus
ME 4953 Special Studies in Mechanical Engineering:

Finite Element Applications in Solid Mechanics and Design
Summer, 1998

INSTRUCTORS: Cocrse Insuxtctor of Record and L_.aclLaboratory Instructor:

Callie Bast, MSME;
Office: 1.04.06 EB; 458-5588; Office Hours: TR, 2:15 - 2:45 pm

and 4:45 - 5:30 pro.

Lola Boyce, Ph. D., P.E.,
Office: 3.04.42 EB; 458-5512; Office Hours: By appt.

Assistant Laboratory_ Instructor:

Mark Jurena, BS

LECTURE/LAB: Lecture:

Lab:
TR 2:45 pm to 3:40 pm

TR 3:40 pm to 4:35 pm

COMPUTER USAGE:

COURSE OUTLINE:

COURSE OBJECTIVE:

Permission of Instructor.

No required text. Course given from instructor's notes, handouts,

and recommended reading fi_m various texts.

ABAQUS, PATRAN, and NESSUS are available for assistance

with projects, reports, and exams.

A review of the necessary mathematical tools for the finite element

method (FEM). Approximate numerical solutions to selected solid
mechanics examples posed as FEM problems. Introduction to
probabilistic methods in solid mechanics and mechanical design

posed as FEM problems.

To provide an understanding of analysis, design, and applications in
solid mechanics and mechanical design using the finite element

method (FEM) and appropriate FEM sofrware tools.

A final grade will be assigned based on the

following percentages:

Midterm Exam 25%
Final Exam 30%
Homework/Labs 25%

Project 20%

EXAMINATION SCHEDULE: Midterm Exam: Thursday, June 25, 1998

Final Exam: 3:15 - 5:45 pm; Tuesday, August 4, 1998

ATTENDANCE: Mandatory. Attendance will be taken randomly.

Homework is assigned weekly and is good preparation for examinations. Questions regarding homework

and other assignments are considered during office hours. No late assignments are accepted. Make-up exams are

given only for extenuating circumstances discussed in advance and are generally more difficult than the regularly
scheduled exam.
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ME 4953 Special Studies: Finite Element Applications in Design
Summer 1999

Lecture: T-Th 2:45-4:35 EB 2.04.06

Laboratory: T-Th 1:00-2:30 Session 001

Laboratory: T-Th 5:00-6:30 Session 002

Instructor:

Lab Instructor:

Lab Assistants:

Text:

Description:

Course Goals:

Prerequisites:

Grading:

Randall D. Manteufel, Ph.D., P.E.

Office: EB 3.04.54

Phone: 458-5522

Office Hours: T-Th 1:30-2:30

Callie Bast, MSME

Office: EB 1.04.06

Phone: 458-5588

Mark Jurena, BSME

Cody Godines, BSME
Office: EB 1.04.06

Phone: 458-5586

The Finite Element Method in Mechanical Desima. C.E. Knight.
PWS-Kent, 1993.

Pro/MECHANICA Structure Tutorial, 2 *ded. Roger Toogood, SDC

Publications. [http://www.amazon.com/, ships in 24 hours] price $49.95.

A review of the mathematical foundations of the finite element method

(FEM) for problems in continuum mechanics. Design ease studies and finite

element applications in mechanical design. Introduction to probabilistic

FEM design. This class will emphasize the application of the FEM using
commercial software.

To give students the opportunity to learn and be able to:

1) understand and explain the mathematical foundations of finite element

analysis

2) understand and explain numerical algorithms used in the finite element
method

3) understand and explain probabilistie methods used in mechanical design

and reliability analyses

4) perform mechanical analysis of components using finite elements

5) use commercial software for finite element analysis in mechanical design

ME 3813 Solid Mechanics

ME 3423 Applied Engineering Analysis

Homework/Laboratory Assignments

Individual Design Project

50%

50%
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The University of Texas at San Antonio

STUDENT MANUAL FOR THE PROBABILISTIC

FINITE ELEMENT CODE, NESSUS

(Numerical Evaluation of Stochastic Structures Under Stress)
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NESSUS

Introduction

Historically, NESSUS has provided probabilistic structural analysis for the response of

engineered structures. It integrates both probabilistic analysis and finite element methods to

produce a useful tool for both design and analysis of critical structural components. NESSUS

allows for both random and deterministic descriptions of input and output quantities. For

example, input parameters for material properties such as Young's modulus, Poisson's ratio,

and mass density can be modeled as random variables wherein the user provides the

appropriate statistics, namely mean, standard deviation and distribution type [2]. In addition,

random input can include random fields, as well as random variables. Distributions such as

Gaussian, Weibull, or lognormal may be selected. Other input parameters, such as loading

type, geometry, boundary conditions and initial conditions can also be considered random.

Then, probabilistic analysis yields the cumulative distribution functions (CDF's) of the output

random variables, e.g., stresses, strains, displacements, etc.

Code Organization

NESSUS is divided into ten parts. The preprocessor, NESSUS/PRE, provides for the

representation of random fields. NESSUS/PRE computes a set of independent random

variables from the random fields using an eigenvalue decomposition [3]. PFEM is the module

for coordinating the operations between the finite element code and FPI. Next, a deterministic

finite-element module, NESSUS/FEM, generates the deterministic responses of the finite-

element structural model to a number of prescribed perturbations of the input variables.

NESSUS/FEM contains a mixed iterative procedure to obtain the response of a structure. A

Newton-Raphson iterative procedure based on a mixed variational principle can be used in

NESSUS/FEM. Besides FEM, BEM, the boundary element module is used for structural

analysis. These deterministic solutions provide the data from which a first or second-order

Taylor series of the response is fit that defines the explicit functional relationship between the

input random variables and the response of interest. The postprocessor, NESSUS/FPI (Fast

Probability Integration), performs the probability calculations. The postprocessor also includes

a choice ofprobabilistic analysis methods other than FPI, including for example, Adaptive

Importance Sampling (AIS) and Monte Carlo simulation [4,5]. SIMFEM however, contains

the driving module for the Monte Carlo as well as the Latin Hypercube sampling of the

structure. There are also other packages for specialized analysis such as the RISK, SYSTEM
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and SYSRSK modules. The RISK module computes the risk with respect to cost or a user

defined criteria. The SYSTEM module is an alternate system reliability method for

probabilistic fault tree analysis. The SYSRSK module computes the system risk by combining

the cost of failure, in terms of replacement, inspection, repair or other criteria of individual

components of the system with their probability of failure. The current version of NESSUS

provides these ten component parts in an integrated package. These modules can be used in

various combinations as the user desires.

Input and Output Files

NESSUS utilizes many different files. Filenames are based upon a logical naming

convention. Depending upon input quantities within certain *PRINT or *PRINTOPTION

statements, various output files will be created. The primary files are as follows:

myfile.dat

myfile.out

myfile.pdb

myfile.fem

myfile.mov

myfile.zal

myfile.fpi

myfile.fpo

myfile.rvd

myfile.feo

This is the name of the input file. It contains information pertaining to finite
element input, probabilistic input and Fast Probability Integration input.

This file contains the majority of the output. It is the output most used for
determining if the input data was correct. Explainations of errors are detailed
within this file.

This is the perturbation database. It is used by NESSUS to extract data for
probabilistie analysis and is in a binary format.

This is the deterministic input analyzed by the NESSUS/FEM module.

This is the primary results from the probabilistic analysis. It contains
information in a concise format for quick evaluation.

A probabilistic results file suitable for input into a spreadsheet such as
Microsot_ Excel and subsequent graphical output.

An intermediate output from NESSUS containing only the FPI input values.
The following files are occasionally seen with various print statements.

An intermediate output from NESSUS containing the probabilistic output.

An intermediate output file form NESSUS. It is usually seen as the output
from the NESSUS/PRE module.

The deterministic output from the NESSUS/FEM module.
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NESSUS Keywords

*PFEM The Probabilistic Finite Element Analysis Method
This is the section that defines what random variables are input into NESSUS

and what kind of analysis is performed on them.

*ZFDEFINE The beginning of the z-function or performance function definition. This
defines what kind of response function is what adding variables that resist the
analysis input.

*ZFUNCTION {Resistance model #} {# of coefficients} Selects the response function.
{zcoef} Listing of real coefficients to be made available to the response function.

C { Resistance model #} = 1 Structural design factor model.
This predefined resistance model defines
(strength- stress).

= 2 Structural design factor model.
This predefined resistance model defines
(stress - strength).

= 3 Material Strength Degradation (MSD) model.
This predefined resistance model is explained in
detail in a later section of this manual.

*MSDM Only required when using Resistance model #3. (See MSD model section of
this manual)

*COMPUTATIONAL METHOD {method #} {number of random variables}

C _-comments _- {method #} selects the type of analysis.
C 1 corresponds to the Finite Element Analysis method
C {number of random variables} : the number of computational random variables.

{integer list of random variables} A list of the random variable numbers (1 2 3, etc.)

*END Signifies the end of the input for the ZFDEFINE section.

*RVDEFINE This is the start of random variable definitions.

*DEFINE {random variable #} Designation # of random variable.
{random variable name} The name of the random variable. This is useful for the user to keep

track of the random variables; give them meaningful names.
{mean#} {standard deviation #} {distribution type}
C

C

C
C
C
C
C
C
C
C
C
C
C

{mean#} The mean of the distribution.

{standard deviation #} The standard deviation of the distribution.

{distribution type} The types of distributions in NESSUS:
NORMAL -Normal or Gaussian Distribution
WEIBULL
EXTREMEVALUE
LOGNORMAL

CHISQUARE
MAXENTROPY
NESSUS
FRECHET
TWEIBULL
TNORMAL

Truncated Weibull Distribution

Truncated Normal Distribution
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{type} Defines the type of finite element data this random variable corresponds to.
Includes the following types:

C ACCELERATION ORIENTATION
C BEAMSECTION PRESSURE
C COEFFICIENTS PROPERTIES
C COORDINATES PSD
C DAMPING SPRINGS
C DISPLACEMENT TEMPERATURE
C DISTRIBUTED LOAD UPERT
C FORCES VELOCITY
HARMONIC YIELDFUNCTION

{databock} Defines a block of additional data as required by an input. See expanded
explanation in the *DEFINE {type} section.

*PERTURB {perturbation #} Defines an individual perturbation
{random variable #} {standard deviation shift}

C
C

{random variable #}
{standard deviation shift}

The random variable that is to be perturbed.
The number of standard deviations that an individual

random variable will be perturbed or shifted.

C MEAN VALUE PROBABILISTIC ANALYSIS

*MVDEFINE This signals the start of the section where the keywords and random
variables will be analyzed using the mean value first or second order
methods. States type of data to be analyzed and which nodes or
components are to be analyzed.

*PERT {# of perturbations}

{list of perturbations}

Selects the total # of perturbations to be used in the
probabilistic analysis.
an integer list of perturbations to be perturbed

*RANVAR {# of random variables} Selects the total number of random variables to be analyzed.
{random variable # list} an integer list of random variable numbers to be perturbed

*DATATYPE {type of data #}

C {type of data #}
C
C

Specifies the type of data on which to perform the
probabilistic analysis.
= 0 specifies Incremental
= 1 specifies Eigenvalue
= 2 specifies Harmonic/spectral
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*RESPTYPE

C

C

C

c

C
c

c

c

c

c

C
C

c

C

C

c

C
c

C

c

c

C

{response type #}

perturbation database.

{response type #}

1= TOTAL DISPLACEMENT

2 = TOTAL STRAIN

3 = TOTAL STRESS
11 =PLASTIC STRAIN

12 = BACKSTRESS

13 = CREEP STRAIN

14 = THERMAL STRAIN

17 = GENERALIZED STRAIN

18 = GENERALIZED STRESS

21 = MATERIAL STATE

VARIABLES
25 = VELOCITIES

26 = ACCELERATIONS

30 = THE EIGENVALUE FOR

THE MODE

31 = MODAL DISPLACEMENT

(EIGENVECTOR)
32 = MODAL STRAIN

33 = MODAL STRESS

35 = THE FREQUENCY IN
RADIAN PER TIME

The type of response variable to extract from the

36 -- THE FREQUENCY IN CYCLES PER TIME

51 = REAL DISPLACEMENT

52 = REAL STRAIN

53 = REAL STRESS
61 = IMAGINARY DISPLACEMENT

62 = IMAGINARY STRAIN

63 -- IMAGINARY STRESS

71 = THE AMPLITUDE OF THE DISPLACEMENT

72 -- THE AMPLITUDE OF THE STRAIN

73 = THE AMPLITUDE OF THE STRESS

81 = THE PHASE OF THE DISPLACEMENT

82 -- THE PHASE OF TIlE STRAIN

83 = TIlE PIIASE OF THE STRESS

91 = MEAN SQUARE DISPLACEMENT

92 = MEAN SQUARE STRAIN

93 = MEAN SQUARE STRESS
96 = STRESS VELOCITY

*CONDITION {beginning condition #} {ending condition #} Selects the beginning and ending
condition numbers for the mean

value analysis.

C Select condition type with previous DATATYPE keyword. The condition refers to
C here refers to either the increment number, the mode number or the

C harmonic/spectral case number respectively.

*NODE {beginning node #} {ending node #} Selects the beginning and ending node
numbers for the mean value analysis.

If there is only one node, then only one
number is needed.

*COMPONENT

C

C

C

C

C

C

C

{beginning component #} {ending component #} Selects the beginning and
ending component numbers
for the mean value analysis.

Component numbers:
1 = translation in the x direction

2 = translation in the y direction
3 = translation in the z direction

4 = rotation with respect to the positive x direction

5 = rotation with respect to the positive y direction.

6 = rotation with respect to the positive z direction
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*PRINT {print control} Controls the amount of printed output that will be generated
during a PFEM analysis.

C {print control}: = SHORT
C

C = MEDIUM

C = LONG

*END

All finite element and fast probability output sent to
the .feo and .fpo files, respectively.
All finite element and fast probability output sent to
the .feo and .fpo files, respectively
All output is sent to the .out file.

Signifies the end of the MVDEFINE section.

C ADVANCED MEAN VALUE PROBABILISTIC ANALYSIS

*AMVDEFINE Signifies the start of the advance mean value analysis definition.

*ITERATION Defines the convergence criteria for the AMV+ z-level and p-level iteration
procedures.

{maximum # of iterations} {error tolerance}

C
C
C
C
C
C

C

C

C
C

C
C
C

C

C
C

C

C

{maximum # of iterations}" The maximum number number of iterations

the procedure is allowed to perform before
exiting

{error tolerance}: The relative error between successive
iterations.

Using the Zlevel Algorithm, convergence is defined to be

= [_i- _i-l[/13i-i= e when using the relative change in beta and

= I Z_ - Z i.ll/Z i.,= 0.2 when using the relative change in the Z

and the angle between the MPP's from the last two iterations, 0, is less
than the allowable maximum of 30 °.

Theta is defined as cos 0= ot i • oti._, where oh are the direction cosines to
the MPP from integration i.

Using the Plevel Algorithm, convergence is defined as

_- I Zl -- Z i-iV Z i-i _- _ and

the angle between the MPP's from the last two iterations, 0, is less than the
allowable maximum of 30 °.

Theta is defined as cos 0 = _i" oti-i, where oh are the direction cosines to
the MPP from integration i

*CONDITION {beginning condition #} {ending condition #} Selects the beginning and ending
condition numbers for the

Advanced Mean Value analysis.

*NODE {beginning node #} {ending node #} Selects the beginning and ending node
numbers for the Advanced Mean Value

analysis.

*COMPONENT {beginning component #} {ending component #} Selects the beginning and
ending component numbers
for the Advanced Mean Value

analysis.

*END Signifies the end of the AMVDEFINE section.
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*END End of PFEM input.

*FEM Signals the start of the deterministic Finite Element section.

*CONS {constitutive model #} Selects the constitutive material model.

C
C
C
C

{constitutive model #} = 0 for linear elastic model.
= 1 selects the simplified plasticity
= 2 selects classical von Mises J2-flow plasticity
= 3 selects Walker's creep-plasticity model.

*ELEMENTS {# of elements} Allocates memory for a maximum number of elements.

{element type #} The element type used for analysis.
C {element type #} The following element type #'s are valid:
C 3=

C 7 =

C 10 =

C 11 =

C 75 =

C 98 =

C 151 =

C 152 =

C 153 =

C 154 =

bilinear, isoparametric plane stress element.

trilinear isoparametric, solid element.

bilinear, isoparametric, axisymmetric element.

bilinear isoparameWic plane strain element.

bilinear, isoparametric, variable-thickness shell element.

linear, isoparametric, tapered beam element.

bilinear, isoparametric, plane stress element.

bilinear, isoparametric, plane strain element.

bilinear, isoparametric, axissymmelric element.

trilinear, isoparametfic, solid element

*NODES {# of nodes} Allocates memory for the number of nodes on the mesh.

*BOUNDARY {# of boundary conditions} Allocates memory for the boundary conditions.

*FORCES {# of forces} Allocates memory for the applied forces.

*PRINT {# quantities printed}
C {# quantifies printed}
C

This controls the amount of data printed to the output file.
The maximum number of quantifies printed to the output
file. The default is 10.

*MONITOR {# of monitored values} Monitors a small number of values when the code is

run interactively. This shows what is happening to
a certain quantity.

*END The end of the memory allocation.

*ITER {begining' perturbation #} {ending perturbation #}
{maximum # of perturbations} {relative error} {absolute error} {displacement error} {energy error}

C This sets the convergence tolerances for the iterative solution algorithms.
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*MONITOR

{Monitored quantity}
To monitors certain values at the end of an iteration.

{Location} {Component #} This selects a small number of values that

will be reported at the end of each iteration.
Used primarily when running the code
interactively.

C {Monitored quantity}
C quantities are valid:
C CREEPSTRAIN

C EQUIVALENTPLASTICSTRAIN
C FORCE

C INCREMENTALDISPLACEMENT
C PLASTICSTRAIN
C REACTION/RESIDUAL

The string denoting the quantity to be monitored. The following

STRAIN
STRESS
TEMPERATURE
THERMALSTRAIN
TOTALDISPLACEMENT

C {Location}
C {Component #}

The component or location to be monitored, i.e., NODE #
The string specifying a particular component or location. The valid
componets are:

COMPONENT #
NODE #

*COORDINATES Used to specify nodal point coordinates for the finite element mesh used in
the analysis.

{node #} {I st-coordinate #} {2nd-coordinate #} {3rd-coordinate #}...

C
C
C

C
C
C

For the element type 3, 11 151 and 152, the two coordinates required are:
{coordinate #}= 1 is the x global coordinate.

2 is the y global coordinate.

For the elements of type 10 or 153, the two coordinates are:
{coordinate #}= 1 is the (z) axial coordinate.

2 is the (r) radial coordinate.

C
C
C
C

C
C
C
C
C

C

For the elements of type 7 or 154, the three coordinates are:
{coordinate #}= 1 is the x global coordinate.

2 is the y global coordinate.
3 is the z global coordinate.

For the three-dimensional shell element type 75, the four coordinates are:
{coordinate #}= 1 is the x global coordinate.

2 is the y global coordinate.
3 is the z global coordinate.
4 is the thickness of the shell.

This defaults to the last nonzero thickness entered.

For the three-dimensional meshes using element type 98, the six coordinates are
{coordinate #}= 1 is the x global coordinate.

2 is the y global coordinate.
3 is the z global coordinate

4 is the x-component of the beam normal
5 is the y-component of the beam normal
6 is the z-component of the beam normal.
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*ELEMENTS {element type #}
{element #} {node # a} {node # b} {node # c} {node # d}

C
C

These lines express element connectivity.
{element type #} The element type used for analysis.

(See *ELEMENTS in *FEM section for valid #'s.)

The total number of elements n must be less than or equal to the maximum specified in parameter

data using the keyword option *ELEMENTS. The exact number m of nodes used to define the

connectivity list for a given element will depend on the element type used for the analysis. It is important

that the element connectivity list be entered in the correct sequence. For a two-dimensional, four-noded

element, this means that the nodes must be entered in counterclockwise order, as shown in Figure 1. Th_

node numbering convention for a three- dimensional, eight-noded element is also shown. The correct

node order is as indicated by the alphabetic sequence A, B, C ... Z. If the node sequence for an elemenl

is found to be incorrect, the code will attempt to fix it by reordering the nodes. A warning message will t

printed to the output file, listing the modified node order. When this happens, the user should always

check the modified node sequence to see whether it still agrees with the desired mesh topology.
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A B

C

Plane stress,

plane strain, or

axisymmetric

C

H

E A

3D Solid element

Node numbering for continuum-type elements.

*BOUNDARY To specify displacement boundary conditions.
{node #} { component #} {prescribed displacement}

C
C

C

C
C

C

C

C
C
C

{node #} The node number.
{component #} The components of the boundary conditions.

1 = translation in the x direction

2 = translation in the y direction
3 = translation in the z direction

4 = rotation with respect to the positive x direction
5 = rotation with respect to the positive y direction.

= rotation with respect to the positive z direction
{prescn'bed displacem6t} The displacement _escn'bed for that particular direction at

that particular node.

*PROPERTIES {element type #} This defines the material properties for a particular set of nodes.
{beginning node #} {ending node #} {prop #1} {prop #2} {prop #3} {prop #4} {prop # 5} {prop # 6}

C
C
C
C

C
C
C

{beginningnode #}
{endingnode #}

{prop #I }

{prop #2}
{prop #3 }
{prop#4}

C {prop #5}
C {prop #6}

Specifies the first node number in a series.
Specifies the last node number in a series.

Specifes the element thickness for a plane stress analysis.
A dummy paramenter otherwise.
Specifies the elastic modulus in units of force/unit length..

Specifies Posssion's ratio a dimensionless quantity.
Specifies the thermal expansion c.oeffident in units of

Length/temperature.Also calledalpha.
Specifies the mass density in unit of mass/length ^3
Specifies the shear modulus for a plane stress element and
Axisymmetric problems and three dimensional solid analysis, in
units of force/length^2. Unused otherwise.
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*FORCES To specify applied forces.
{node #} {component #} {force} Specifies the location, component

node.
and force applied to a

C {node #}
C {component #}
C {force}

Specifies the node number
Specifies the direction of the force (see *BOUNDARY)
Specifies the magnitude of the load applied.

*PRINT

{quantity type} {beginning #} {ending
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C

{quantity type}

{location parameter}

#} {location parameter} {beginning #} {ending #}
Controls the amount of data printed to the output file.
The beginning and ending #'s are optional, otherwise all
components will be printed.
Specifies particular quantity to be printed.
The possible quantity types are:

CREEPSTRAIN

EQUIVALENTPLASTICSTRAIN
FORCE
INCREMENTALDISPLACEMENT
PLASTICSTRAIN
REACTION/RESIDUAL
STRAIN
STRESS
TEMPERATURE
THERMALSTRAIN
TOTALDISPLACEMENT

The possible location parameters are:
ELEMENTS
INTEGRATIONPOINTS
LAYERS
NODES

*END Specifies the end of all model data input.

*FPI Specifies the start of the Fast Probability analysis input setion.

*RVNUM {random variable #} The number of random variables to be analyzed by Fast
Probability Integration.
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*GFUNCTION {function type #} Defines the g-function approximation.

C {function type #}
C
C
C
C
C
C
C

C
C
C
C
C
C
C

*DATASETNM {# of data sets}

The type of function desired by the user.
= I for a linear g-function approximation.
N+ 1 datasets are required for linear, where N is the number
of random variables or pertubations.

= 2 for a quadratic g-function approximation.
2*N+l data sets are required for the quadratic
approximation.
= 5 for a g-function of the form (strength-stress). Used for
reliability analysis with the strength-stress form, i.e. R-S.
Only the probability of failure, i.e. P[g(x)<0], will be
determined.

= 6,7,8 for a user defined response function.
g-function must be programmed in routine RESPON or

USERES, or defined in the input deck provided that the
g-function has a continuous first derivative.
Designates the number of data sets for a particular problem.
(See *GFUNCTION for the number required.)

*METHOD {method type #} Defines the solution type used in FPI analysis.

C {method type #}

C
C
C
C

=0

=1

First order reliability method (FORM).

Advanced first order reliability method (FPI).
Computes both first order reliability method and
advanced first order reliability method solutions.
Parameter = 1 is recommended.

C
C

C
C

C
C

C
C
C
C
C

C
C
C

=2

=3

=4

=5

=6

Fast convolution in the regular-space (CONVX).
FORM solution computed first.

Fast convolution in the standard normal-space
(CONVU).
FORM solution computed first.

Second order reliability method (SORM).
FORM solution computed first.

Importance sampling method with radius reduction
factor (ISAMF). *MONTE keyword and data are
expected in the Model section of FPI.
Monte Carlo can only be used for user-defined
response levels (ZLEVELS), *ANALTYP= 1.

Conventional Monte Carlo method (MONTE).
*MONTE keyword and data are expected in Model
section. Monte Carlo can only be used for
*ANALTYP = 0 or 1.

C
C
C
C
C
C

=7

=8

Same as parameter = 5 except that the radius is user-
supplied (ISAMR).Limited to *ANALTYP = 1.
Adaptive importance sampling (linear
surface)(AIS1). *ITOL keyword and data are
expected in Model section.
Limited to *ANALTYP = 1.
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C
C
C
C

=9 Adaptive importance sampling (quadratic surface)
(AIS2). *ITOL keyword and data are expected in
Model section.
Limited to *ANALTYP = 1.

C

C

C
C
C

=10

=11

=12

Mean value method (MV).

Advanced mean value method (AMV).

Advanced mean value method plus (AMV+).
*ITER keyword and data are expected in Model
section.

*PRINTOPT {printout type #}

C {printout type #}
C
C

*ANALYTYPE {analysis type #}
C {analysis type #}
C
C
C
C
C =1
C
C
C =2
C
C

Defines the amount of data to be printed out from FPI.
= 0 for the short print out.
= 0 for long print out.

Specifies the analysis type.
The types used are:
= 0 FPI defined probability levels are used. These are

automatic and are typically from -4.5 to 4.5 standard
deviations from the mean of the response.
User defined response levels(Z levels). The *ZLEVELS
keyword and the Zlevels are required in the FPI model
section. This is the most efficient method.

User defined probability levies. The PLEVELS keyword
and the probability levels are required in the FPI model
section.

*END Signifies the end of the parameter data. What follows this first *END is
the FPI model data section.

*ZLEVELS {# of levels} Defines the number of response levels; maximum =20

*PLEVELS {# of levels} Defines the number of probability levels.

*MONTE

{# of samples} {seed #} {beta factor}
C
C

C
C

C
C
C

*ITOL
*ITER
*CONFINTVL
*END

Specifies the data necessary for running Monte Carlo Simulations. This
line is required when Method=5, 6 or 7 in the FPI parameter section.

{# of samples} The number of random samples for each response level using *METHODs
5 and 7.

It is the total number of random sampels for METHOD 6.
{seed #} The random number generator seed, however, it must be an integer.
{beta factor} = 5 This defines the reduction factor for the sampling radius based on

the minimum distance.
= 6 This value is zero.

= 7 This value is a user-supplied radius.

End of input file.
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Material Stren__th Degradation (MSD) Model

The MSD model in the form of a postulated randomized multi-factor equation provides for

quantification of uncertainty in the lifetime strength of components subjected to a number of

diverse random effects. The mathematical expression for this MSD model is:

S =I'II. "4j-----U---- A--L 1 aiL%-A,.o (')

where, Ai, Aiu and Aio are the current, ultimate and reference values, respectively, of a particular

effect; a i is the value of the calibrated empirical material constant for the ith effect terms of the

variables in the model; and S and SO are the current and reference values of material strength.

Each term has the property that if the current value equals the ultimate value, the lifetime strength

will be zero. Also, if the current value equals the reference value, the term equals one and

strength is not affected by that value. The product form of equation (1) assumes independence

between individual effects. This equation may be viewed as a solution to a separable partial

differential equation in the variables with the further limitation or approximation that a single set of

separation constants, ai, can adequately model the material properties.

The model is currently set up for five fixed effects and 12 user defined effects that

typically reduce lifetime strength. These effects are listed below:

• High temperature

• High-cycle mechanical fatigue

• Low-cycle mechanical fatigue

• Creep

• Thermal fatigue

• Up to 12 user def'med (General) effects

When expanded for all effects, the equation is as follows:

[_Tq . _ ,lrr_,iris,,s = _-7°] L_-I_oJ L_ _ JL*_ t _v_ o_,.
So l ,_u

o - -N"IIA--Ao '

Temperature HCF LCF Creep Thermal Fatigue General

(2)

where T is temperature, N is cycles, t is time, and A is a user-defined effect. The lower case

exponents are the empirical material constants for each effect. The subscript, u, refers to an

ultimate value, the subscript, o, is the reference value, and the non-subscripted term is the current

value for the effect.
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To increase model sensitivity for certain effects, a logarithmic base ten transformation is

introduced resulting in the following form.

[ )l°S = S LOG(Aiu )- LOG(Ai

°Ltoc(A,u)- LOO(A,o)J
(3)

The nature of the material data will dictate the use of the log transformation. The effects to be

used and the model type (log transformation) are defined in the Z-function definition section of the

PFEM input file. Any combination of effects can be selected and any of the terms can be

considered random if desired. The form of the g-function used by NESSUS is

_.g- So _-_ - o ,
where

So

_o

ai

(4)

is the reference value of material strength

is the ultimate value of the particular effect

is the reference value of the particular effect

is the current value of the particular effect

is the empirical material constant for the particular effect

is the structural response as calculated by NESSUS/FEM, i.e. stress.
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As an example, the equation is expanded for the two effects of high temperature and high-

cycle mechanical fatigue as shown in equation (5) below:

s_[_-_]"r...o__,v,,)- ...oo.,,>1"-o._>
L_ :_"_:JLLO0 (_--_) _ (N--o)j

The MSD model was calibrated for INCONEL 718 by appropriate curve-fitted least squares linear

regression of experimental data. Linear regression of the data for each effect resulted in estimates

for the empirical material constants, as given by the slope of the linear fit. These estimates,

together with ultimate and reference values, were used to calibrate the model specifically for

Inconel 718. Lifetime material strength results, in the form of cumulative distribution functions

(CDF's), illustrate the sensitivity of lifetime strength to any one, or a combination of, the effects.

The formulation defined in NESSUS is

r,,.,,-T]'f ,.oo_,v,,)- ,.oo_ T -z= °L_-Fo LE6-_ (_) L-5"5 (No)J o-

By defining S to be 1.0 and not including a computational model to compute stress (o = 0.0),

then NESSU S is solving the problem for S/So. The random variables are defined in Table 1.

Table 1. Random Variable Definitions

Effect

High Cycle

Mechanical

Fatigue

Symbol

Nu

N

No

Distribution

Normal

Normal

Normal

Mean

1.0x 10 'ucycles

2.5x 105 cycles

0.25 cycles

Standard

Deviation

1.0x 10 _ cycles

2.5x 104 cycles

0.025 cycles

(at 75 *F)

High

Temperature

(at 1000*F)

W

Tu

T

To

Q

Normal

Normal

Normal

Normal

Normal

0.3785

2369.0*

1000.0"

75.0*

0.2422

0.0114

236.90*

100.0"

7.5*

0.0088
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The relevant NESSUS input for this problem is shown in Figure 1. Note that to consider a term

in an effect random, the alphanumeric name must match the name in the RVDEFINE input. An

example of this is the highlighted NU variable shown in both the ZFDEFINE section and the

RVDEFINE section in Figure I.

*ZFDEFINE

*EXPLICITMODEL 8

1,2,3,4,5, 6,7,8

*ZFUNCT 3 0

*MSDM 1 .0 (So)

TEMP LINEAR

HCF LOG NU N

END

*END

*RVDEFINE

*DEFINE 1

NU

1.0El0 I.OE9 NORMAL

*DEFINE 2

N

2.5E5 2.5E4 NORMAL

*DEFINE 3

NO

0.25 0. 025 NORMAL

*DEFINE 4

0.3785 0.0114 NORMAL

*DEFINE 5

TU

2369.0 236 .9 NORMAL

*DEFINE 6

T

1000.0 I00.0 NORMAL

*DEFINE 7

TO

75.0 7 .50 NORMAL

*DEFINE 8

QQ

0.2422 0.0088 NORMAL

TU T TO QQ

NO Vq

Figure 1. NESSUS Input for Example Problem
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*DEFINE {type)

ACCELERATION
nodel daccl 1 dacc21 daccrnl

node2 daccl 2 dacc22 daccm2
noden daccl n dacc2n ... daccmn

where the values dacc denote relative perturbations to the m components of the initial accelerations
at each node. This means that, when the associated random variable is perturbed by one full
standard deviation, a total change ofdstdev times dacc2n should be observed in the second

component of the initial acceleration for node n. The same general rule also holds for other
components

COORDINATES
nodel dcoorl 1 dcoor21 ... dcoorml
node2 dcoorl 2 dcoor22 ... deoorm2
noden dcoorl n dcoor2n ... dcoormn

where the values dcoor denote relative perturbations to the m components of the nodal coordinates
at each mesh point. The input format for DataBlock is identical to the one used to specify
*COORDINATES as discussed elsewhere in this section.

The input format used for defining a perturbation variable associated with the Rayleigh damping
coefficients is
DAMPING 1

dalpha dbeta

wherejdamp is set to 1, for Rayleigh damping, and dalpha and dbeta are the relative perturbations
to the two Rayleigh damping parameters

DAMPING 2

imodel jmodel dratiol
imode2 jmode2 dratio2
imoden jmoden dration

where jdamp is set to 2, for modal viscous damping, and the values of dratio denote the relative
perturbations to the modal damping ratios.

DAMPING 3

imodel jmodel dratiol
imode2 jmode2 dratio2
imoden jmoden dration

where jdamp is set to 3, for structural damping, and the values ofdratio are again used to denote

the relative perturbations to the modal damping ratios. In all three cases, the formats are identical
to the ones used to prescribe a given damping model using the *DAMPING keyword option.
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DISPLACEMENT
nodel ddisl 1 ddis21 ... ddisml
node2 ddis 12 ddis22 ... ddism2
noden ddisl n ddis2n ... ddismn

where the values ddis are relative perturbations to the m components of the initial displacements at
each node.

DISTRIBUTEDLOAD jetyp
ieleml jeleml indexl ddistl 1 ddist21 ... ddistml
ielem2 jelem2 index2 ddistl2 ddist22 ... ddistm2
ielemn jelemn index3 ddistl n ddist2n ... ddistmn

where the values ddist are relative perturbations to the m distributed loads for each element
between ielem and jelem. Notice the flag jetyp, which is used to indicate the element type used for
the analysis.
FORCES
nodel ndof 1 dforcel
node2 ndof2 dforce2
noden ndofn dforcen

where dforce are the relative perturbations to the force (or moment) acting at degree- of-free dom
ndof of node node. It is assumed that a set of unperturbed loads has been defined at these nodes
and degrees-of-freedom (even though these unperturbed loads may have zero magnitude).

The three different perturbation variables associated with harmonic excitation parameters are
discussed next.

HARMONIC jharm
dfreq
FORCES

nodel ndof 1 damplil dphasel
node2 ndof2 dampQ dphase2
noden ndofia damplin dphasen

where dampli and dphase are relative perturbations to the amplitude and phase of the harmonic
loads acting at degree-of-freedom ndof of node node, and dfreq - is the perturbation to the
excitation frequency. It is assumed that unperturbed harmonic force excitations have been
previously specified at these nodes and degrees-of-freedom for harmonic case jharm.

To define a perturbation variable associated with harmonic base acceleration parameters, the input
format is

HARMONIC jharm
dfreq
ACCELERATION

nodel ndof 1 damplil dphasel
node2 ndof2 dampli2 dphase2
noden ndofn damplin dphasen

where dampli and dphase are the relative perturbations to the amplitude and phase of the harmonic
base accelerations for degree-of-freedom ndof of node node, and dfreq is the perturbation to the
excitation frequency. It is assumed that unperturbed base accelerations have been specified
previously at these nodes and degrees-of-freedom for harmonic case jharm.
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Finally, the input format used for defining a perturbation variable associated with the harmonic
pressure loading parameters is
HARMONIC jharm
dfreq
PRESSURE

inodel jnodel damplil dphasel
inode2 jnode2 damplQ dphase2

inoden jnoden damplin dphasen

where dampli and dphase are the relative perturbations to the amplitude and phase of the harmonic
pressure loading defined at nodes inode through jnode, and dfreq is the perturbation to the
excitation fi'equency.

ORIENTATION

inodel jnodel dalphal dbetal dgammal
inode2 jnode2 daipha2 dbeta2 dgamma2

inoden jnoden dalphan dbetan dgamman

where dalpha, dbeta, and dgamma denote relative perturbations to the three direction angles
defining the material orientation in three dimensions. For two-dimensional analysis, only the first
angle needs to be specified.

PRESSURE

inodel jnodel dpressl
inode2 jnode2 dpress2

inoden jnoden dpressn

where the values of dpress are relative perturbations to the nodal pressures acting at nodes inode
through jnode.

PROPERTIES jetyp
inodel jnodel dpropl 1 tiptop21 ... dpropml
inode2 jnode2 dprop 12 dprop22 ... dpropm2

inoden jnoden dpropln dprop2n ... dpropmn

where the values of dprop are used to denote relative perturbations to the m material properties
assigned to nodes inode through jnode. Notice the flag jetyp, which is used to indicate the element
type used for the analysis.
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The three different types of perturbation variables associated with power spectrum excitations are
discussed next. The input format used for defining a perturbation variable involving power spectra
for nodal forces is:

PSD jpsd
dfreq 1 dpsdl
dfreq2 dpsd2
dfreqm dpsdm
FORCES

nodel ndof 1 damplil
node2 ndof2 dampV
noden ndofn damplin

where dfreq and dpsd define changes to the profile of the power spectrum excitation curve, and
dampli is the relative change in amplitude of the power spectrum excitation for degree-of-freedom
ndof at node node. It is assumed that unperturbed power spectrum forces have been previously
specified at these nodes and degrees-of-freedom for thejpsd power spectrum case.

The input format used for defining a perturbation variable associated with the power spectrum
excitation parameters for base acceleration is
PSD jpsd
dfreq 1 dpsdl
dfreq2 dpsd2

_tfreqm dpsdm
ACCELERATION

nodel ndof I damplil
node2 ndof2 dampdi2

noden ndofia damplin

where dfreq and dpsd define changes to the profile of the power spectrum excitation curve, and
dampli is the relative change in amplitude of the power spectrum excitation for degree-of-freedom
ndof at node node. Again, it is assumed that unperturbed power spectrum accelerations have been
specified at these nodes and degrees-of-freedom for the jpsd power spectrum case.

To define a perturbation variable involving the power spectrum excitation parameters for nodal
pressures, the input format is

PSD jpsd
dfreq 1 dpsdl
df req2 dpsd2

_ifreqm dpsdm
PRESSURE

inodel jnodel damplil
inode2 jnode2 dampi2

inoden jnoden damplin

where dfreq and dpsd define changes to the profile of the power spectrum excitation curve, and
dampli denotes the relative change in the amplitude of the random pressure loading acting at nodes
inode through jnode.
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In all cases, the number of lines defining the profile of the power spectrum excitation curve is
limited by the parameter npsdp, and the number of data lines following FORCES,
ACCELERATION, or PRESSURE is limited by the parameter npsep, both defined by the *PSD
option in the parameter data block for the problem..

Perturbation variables involving ground spring stiffnesses may be defined using the following
input format
*DEFINE jpvar
dmean dstdev
SPRINGS
nodel ndofl dstiff 1
node2 ndof2 dstitT2

noden ndof n dstiffn

where dstiffis used to denote the relative perturbation to the ground spring stiffrtess at
degree-of-freedom ndofofnode node. It is assumed that a set of unperturbed ground springs has
been defined at these nodes and degrees-offreedom.
The input format used for defining a perturbation variable associated with the nodal temperatures
is

TEMPERATURE

inodel jnodel dtempl 1 dtemp21 ... dtempml
inode2 jnode2 dtemp 12 dtemp22 ... dtempm2

inoden jnoden dtempln dtemp2n dtemprnn

where the values dtemp denote relative perturbations to the m temperatures at each mesh point.
The input for most dements requires only one temperature value at each mesh point.. However,
elements with multiple layers, such as the bilinear shell element (type 75), will need to have
temperatures specified for each one of the m layers at a node.

The NESSUS finite element c,ode also provides a facility for defining general loading
time-histories that are a function of one or more random variables. These random variables are not

necessarily, associated with any particular loading type, and may even represent quantifies that are
not explicitly defined in the finite element code, such as engine power level, flow rate, and inlet
temperatures in a duct, etc. The functional dependence of the loading on these random variables
may be coded as a general analytical (or algorithmic) expression in subroutine UPERT.
The input format for defining a random variable to be used as an input to the UPERT user routine
is
UPERT

Notice that a DataBlock is not included, since this information will be defined in the coding for the
UPERT subroutine. Although the statistics for the random variables may not (at present) be taken
to be a function of time, the functional dependence of the loading on these random variables may
be expressed as a function of time.
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The input format for defining a perturbation variable associated with the initial velocity for a
dynamic problem is
VELOCITY
nodel dvel 11 dve 121 ... dvelml
node2 dvel 12 dve122 ... dvelm2
noden dvell n dvel2n ... dvelmn

where the values dvel are relative perturbations to the m components of the initial velocity at each
node..

A slightly more cumbersome format is used to define perturbation variables associated with the
yield stress and work=hardening curves for elastoplastic materials. However, this somewhat
complicated format also provides a great deal of flexibility in the way elastoplastic behavior is
defined paramaterically at different mesh nodes. The input format for defining perturbation
variables involving the work=hardening curves is
YIELDFUNCTION

inodel jnodel
dsigmal depspl 1 domegl
dsigma2 depsp 12 domeg2

clsigmak depsplk domegk

inode2 jnode2
dsigmak+ 1 depsplk+ I domegk+l
dsigmak+2 depsplk+2 domegk+2

clsigma2k depspl2k domeg2k

where dsigma, depspl, and domeg denote the relative perturbations to the yield stress, equivalent

plastic strain, and backstress for the work=hardening curves from inode through jnode. These

values should be arranged as a set of 3 x k tables, where k =- nhard as defined by the

*HARDENING option in the parameter data block. One or more node lists, each one with the

associated work-hardening table, may be input in a single *DEFINE option, provided that all the

tables contain exactly 3 x k entries. This concludes the discussion of the many different types of

Level 2 perturbation variables currently available in the NESSUS finite element code. One or more

of theses variables may be changed in a given perturbation, as discussed under the keyword

*PERTURB.
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Example problem" Simply Supported Beam

L. 10'

5,000 Ibs

Problem Definition: Random Variables in NESSUS input file

Variable Description Tvvc Mean Standard Deviation (10%) Distribution
PMAX Point Load loading 5,000 lbs 500 Normal
L Beam Length Geometry 20 ft. 2.0 Normal
H BeamHoight Geometry 2ft. .2 Normal

Using the probabilistic finite element analysis pmgram,NESSUS, determine the mean

maximum bending stress, G=. Compare to the expected Mechanics of Solids detenninistic

solution using the flexure formula, Gf-My/I.
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Divide your beam into 8 elements (15 nodes) with the following numbering scheme.

Then further divide your beam to increase the accuracy of your results.

5,000 Ibs

20'
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*PFEM

C THREE POINT BEND PROBLEM

C

C

C Computational Methods for Probabilistic Engineering Analysis
C

C

C NESSUS Advanced Mean Value First Order Iteration CDF analysis (AMV+)
C

C The material is STEEL.

C

C Random variables include:

C

C 1 PMAX point load acting at the center of the beam

C 2 L length of the beam

C 3 H height of the beam

C

C.,.,°..,o....o.o..o.....o..,..........o.,...o....o.......°,o,o........o

C

C Z-F_NCTION DEFINITION
C

C 3 RANDOM VARIABLES (3-COMPUTATIONAL)

C

*ZFDEFINE The beginning of the z-function definition

*COMPUTATIONALMETHOD i 3 This invokes the NESSUS/FEM section with 3 random

123

C

*EN D

C

C

C RANDOM VARIABLES

C

C

*RVDEFINE

*DEFINE 1

PMAX

-5000 500

C

C

FORCES

13 2 1.0

*DEFINE 2

L

20.0 2.0

COORDINATES

variables.

This is a list of the random variable numbers.

This is used to indicate the end of the ZFDEFINE section.

This is the start of the definition of the random variables.

The random variable numbered as I.

The random variable name

NORMAL The mean, standard deviation an distribution type.

This denotes the type of random variable.

This random variable is numbered 2.

The name of the random variable.

NORMAL The mean, standard deviation and distribution type.
The type of data block.

The start of the data block. 1 is the node number 0.00

is the perturbation amount in the x direction, 0.0 is

the perturbation in the y direction.

1 0.00 0.0

C

C

2 0.25 0.0

3 0.50 0.0

4 0.75 0.0

5 1.00 0.0

6 0.00 0.0

7 0.25 0.0

8 0.50 0.0
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9 0.75 0.0

I0 1.00 0.0

11 0.00 0.0

12 0.25 0.0

13 0.50 0.0

14 0.75 0.0

15 1.00 0.0

*DEFINE 3

H

2.0 0.2 NORMAL

COORDINATES

1 0.0 0.0

C

C

2 0.0

3 0.0

4 0.0

5 0.0

6 0.0

7 0.0

8 0.0

9 0.0

i0 0.0

11 0.0

12 0.0

13 0.0

14 0.0

15 0.0

* PERT I

1

C

C

* PERT 2

2

C

*PERT 3

3

C

* END

C

C

0.0

0.0

0.0

0.0

0.5

0.5

0.5

0.5

0.5

1.0

1.0

1.0

1.0

1.0

This random variable is numbered 3.

The random variable name.

The mean, standard deviation and distribution type.

The type of data block.
The start of the data block. I is the node number 0.00

is the perturbation amount in the x direction, 0.0 is

the perturbation in the y direction.

The first perturbation for random variable number one.

0.I The perturbation for the first random variable and 0.i is the
amount of that random variable's standard deviation that is to

be perturbed.

The second perturbation for random variable two.

0.I The perturbation for the second random variable and the amount

of standard deviation that is to be perturbed.

The third perturbation for random variable number three.

0.1 The perturbation for the third random variable and the amount

of standard deviation that is to be perturbed.

The end of the random variable parameter input.

C MEAN VALUE PROBABILISTIC ANALYSIS

Signals the start of the mean value analysis section.

The number of perturbations to be probabilistically analyzed.

The order of perturbations to be perturbed.

The number of random variables to be used in the perturbations.

The order of random variables to be perturbed.

*DATATYPE 0 The incremental(0) type of data on which to perform the

C probabilistic analysis.

*RESPTYPE 3 The stress type(3) of response variable to extract from the

C

*MVDEFINE

*PERT 3

123

* KANVAR 3

123

perturbation database.

The beginning and ending datatypes.

The beginning and ending node numbers to probabilistically

analyze. Here it is the same node.

The beginnning and ending component numbers to be

probabilistically analyze. Here it is the x direction.

The keyword to signify a long printout.

C

*CONDITION 0

*NODE 3

C

*COMPONENT 1

C

*PRINT LONG
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*END The end of the MVDEFINE section

C

C

C ADVANCED MEAN VALUE PROBABILISTIC ANALYSIS

C

*AMVDEFINE

*ITERATION

I0 0.05

C

*CONDITION 0

*NODE 3

*COMPONENT 1

C

*END

C

C END PFEM INPUT

C

*END

C

* FEM

C

*CONS 0

C

*ELEMENTS 8

151

C

*NODES 15

*BOUNDARY 3

* FORCES 1

* PRI NT

*MONITOR 2

C

* EN D

*ITER 0 3

C

50 0. 001

C

*MON IT O R

Signals the start of the Advanced Mean Value anlysis section.

The convergence criteria for the AMV+ anlaysis.

The maximum number of iterations(10) and the relative error

(0.05)between consecutive runs.

The beginning and ending nodes for the AMV analysis.

The beginning and ending node numbers for the AMV analysis.

The beginnning and ending component numbers for the AMV

analysis. Here it is the x direction.
The end of the AMVDEFINE section.

The end of the Probabilistic Finite Element Analysis input.

The start of the input for the deterministic finite element

program
This invokes the linear elastic constitutive model used for

analysis

This line reserves memory for 8 elements.

This line indicates the element type is a plane stress
element.

This line reserves memory for 15 nodes.

This line reserves memory for 3 boundary conditions.

This line reserves memory for 1 applied force.

This line prints out I0 output quantities to the ouput file.

This line prints out 2 monitored values reported at the end of

each iteration.

The end of the memory allocation or parameter input.

The iteration tolerance for the iterative solution for 3

iterations.

The maximum number of iterations and the relative error

between successive iterations.

To monitor certain values at the end of an iteration.

TOTALDISPLACEMENT NODE 3 COMPONENT 2 Monitor the total displacement for

C node 3 in the y direction.

STRESS NODE 3 COMPONENT 1 Monitor the stress for node 3 in the x

C

*COORDINATES

1 0.0 0.0

2 5.0 0.0

3 I0.0 0.0

4 15.0 0.0

5 20.0 0.0

6 0.0 1.0

7 5.0 1.0

8 I0.0 1.0

9 15.0 1.0

I0 20.0 1.0

ii 0.0 2.0

12 5.0 2.0

13 i0.0 2.0

14 15.0 2.0

15 20.0 2.0

direction.

Nodal coordinate locations

Node 1 is located at x = 0.0, y = 0.0.

Node 2 is located at x = 5.0, y = 0.0
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*ELEMENTS 151

1 1 2 7 6

C

2 2 3 8 7

3 3 4 9 8

44 510 9

5 6 7 12 II

6 7 8 13 12

7 8 9 14 13

The element connectivity for the plane stress element 151.

Element number I, nodal counter-clock-wise direction for A, B,

C and D.

8 9 10 15 14

*BOUNDARY Boundary conditions

1 2 0.0 Boundary at node 1 is constrained not to move in the y
C direction

110.0

520.0

*PROPERTY The physical properties of the elements prescribed at the

C nodes.

i 15 1.0 4.320E9 0.3 1.0 1.0 The first node, last node, dummy variable,

C modulus of elasticity, Poission's ratio,

C thermal expansion coefficient and mass

C density.

*FORCES The force applied.

13 2 -5000 Its applied at node 13 in the y direction of -5000 units.

*PRINT What quantities to print to the output file.

TOTAL NODE Print the total displacement at all of the nodes.

STRESS NODE Print the stress at all of the nodes.

*END The end of the model data input.
C

C FPI ANALYSIS CONTROL CARDS

C

*FPI Signifies the start of the Fast Probability Input section.

This defines the number of random variables/perturbations.

This defines the the Linear (i) type of g-function

approximation.

This defines the 4 datasets in the problem. This is necessary

as RVNUM + 1 datasets are output.

This defines the Advanced first order method(l) solution

technique.

This denotes the short printout(0) option.

This defines the full CDF analysis output (0) with 10 levels.

This signifies the end of the FPI section.

This signifies the end of the input file.

C

*RVNUM 3

*GFUNCTION 1

C

*DATASETNM 4

C

*METHOD 1

C

*PRINTOPT 0

*ANALTYPE 0

*END

*END
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NESSUS Example problem

The system to be analyzed is the cantilevered beam shown in Fig. 2. The beam is

composed of steel (ASTM-A36). The system has two concentrated loads acting on it.

Determine the maximum average normal stress and its location using NESSUS.

hffi3

PyffilO00
!

Lffi 30

Figure 7. Cantilevered beam. All dimensions
are in Inches and forces are in POUnds The beam
has a unit deoth.
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7.FDEFIIIE

=O[IPUTATIOI,JALHETIIOD 1 4

234

_rlD

_VDEF [lIE

DEFIIJE ]

Z

gO 0.6666666 LOGNORIIAL

OPCES

11.0

DEFINE 2

Y

O0O O. 8 LOGtJORHAL

ORCES

21.0

DEFI lIE ]

• 0 [l. 2 IffpPl4Al..

"OOR D 111ATE.':J

O.q U.(P

0.0 0.0

0.0 0.0

0.0 0.5

, 0.0 0.5

; 0.o 0.5

' 0.0 1.0

! 0.0 1.0

P 0.0 1.0

'DEFIHE 4

_0 O. 8 I&OR/.b_,L

=OORDI IIATES

! 0.0 0.0

2 0.5 0.0

] 1.0 0.0

4 0.0 0.0

5 0.5 0.0

6 1.0 O.O

7 0.0 O.0

8 0.5 0.0

91.0 0.0

• PERT 1

1 0.1

• PERT 2

20.1

4 FEET 3

3 0.1

' PERT 4

40.1

• EHI)

C

C

• ItVDEF 114E
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• I_EHT 'I

1 2 ] 4

• RAI/VAR 4

! 234

* DAT,,'_'|"/PE D

• * PESPTYPE 3

"COIIDIT1 OI1 U

' IIOI)E 1

' COHPOIIEI rl' 1

" f'RIIIT LO|IG

• E/ID

C

C

C

"A/4VDE F I lie

" ITERATIOII

10 0.05

"COtll)lTIOtl 0

* NODE 1

"CO|IPOI,IENT 1

* END

C

C

C

C EIID PF'EI4 ]HPUT

* EJJD

C

C

* F El-|

• CONS O

2 .... 1.1]XED rIETHOD

ELEt, IENTS 4

151

• NODES 9

• BOUHDARY 6

• FORCES 2

• PRIIIT

"llOr'll TOR 2

• EIID

• ITER 04

50 0. 001

• I IOIJITOR

STI_ES$

* COORDIIJATES

10.U 0.0

2 15.0 0.0

3 30.00.0

4 0.0 1.5

5 15.0 1.5

6 30.0 1.5

7 0.0 3.0

8 15.0 3.0

9 30.0 3.0

QELEHEN'I'S 151

11254

223(;5

34587

45698

• BOUI IDARY

I I 0.0

NODE 1 COMPONENT 1
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120.0

4 10.U

420.0

"1 1 0.0

7 2 0.0

• PPOPEP.TY

I 9 1.0 30.0E6 0.3 1.0 1.0

' FOPf'E:I

6 1 500

6 2 1000

• PE IIIT

TOTAl. IIODE

STP.E,_ S I IODE

• EblD

C

C

*FPI

C pfemd4

• RVIIUI| 4

* GFUIICTION 1

' DI_TASETI@I 5

* IIETIIOD 1

* PPIIrFOPT 0

* AII/_LT'/PE 2

" EIII)

• PLEVELS iI

0 0001

0 001

00l

0 1

,02

0 S

0 8

0 9

0.99

0.999

0.9999

C

* END
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Executive Summary

This report describes the work performed on the project entitled "NESSUS Enhancements and

Technology Support." This project was in support of the NASA grant entitled "Research and
Education in PTobabilistic Structural Analysis and Reliability" awarded to the University of

Texas at San Antonio CUTSA). The project included NESSUS software enhancements and

technology support for staff and students at UTSA.

The NESSUS probabilistic structural analysis computer program combines state-of-the-art

probabilistic algorithms with general-purpose structural analysis methods to compute the

probabilistic response and the reliability of engineering structures. Uncertainty in loading,

material properties, geometry, boundary conditions and initial conditions can be simulated. The

structural analysis methods include nonlinear finite element methods, boundary element

methods, and user-written subroutines. Several probabilistic algorithms are available such as the

advanced mean value method and the adaptive importance sampling method.

The previous version of NESSUS (version 6.2) was able to perform a reliability analysis of a

structure when the failure mode is strength exceeding a stress. However, it required the user to

develop a model for the strength portion of the limit-state function using a user subroutine.

Another option was to define the strength (i.e., yield stress) as a single random variable. A

material strength degradation (MSD) model has been implemented in NESSUS to provide for an

alternative material strength capability.

The implementation of the material strength degradation model in NESSUS was compared to

previously published results using the PROMISS code. The PROMISS computer program

determines the random strength of an aerospace propulsion material due to a number of random

effects such as high and low cycle fatigue, temperature, creep, and thermal fatigue. However,
the NESSUS results did not match the solution using PROMISS. Upon further investigation of

NESSUS and PROMISS, it was found that the sampling scheme in PROMISS was incorrect.

This was corrected in the updated version of PROMISS and test cases were developed and

exercised for normal, lognormal, Weibull, and nominal variables. After this correction,

NESSUS and PROMISS provided the same solution.

The convergence criteria have been improved for the most probable point based methods (MPP)

in NESSUS. Specifically for the advanced mean value method (AMV+) and the first order

reliability method (FORM). In addition, two new keywords have been added to allow the user

more control over the tolerances used to determine convergence.

SwRI supported UTSA in the use and understanding of the NESSUS program. In particular,

many questions were answered about the NESSUS input and output in support of Mark Jurena's

master's thesis research. Also, questions were answered and assistance provided in developing a

suitable problem for an undergraduate course. In addition, David Riha provided two lectures for

the UTSA course ME 4653 "Finite Element Applications in Solid Mechanics and Design"

describing the NESSUS computer program capabilities and several example problems (Summer

1998 and 1999). SwiLl also assisted with computer laboratories associated with these classes
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where the students used NESSUS to compute the probabilistic distribution of stress of a simply

supported beam.

Southwest Research Institute met the objectives of the grant within budget by enhancing the

NESSUS computer program and supporting UTSA in advancing probabilistic mechanics in its

curriculum. The NESSUS version 6.3 computer program and updated documentation were

delivered at the completion of the project.
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1. Introduction

This report describes the work performed on the project entitled "NESSUS Enhancements and
Technology Support." This project was in support of the NASA grant entitled "Research and
Education in Probabilistic Structural Analysis and Reliability" awarded to the University of
Texas at San Antonio (UTSA). The scope of the project included NESSUS software
enhancements and technology support for staff and students at UTSA. This report describes the
accomplishments of this project

NESSUS

The NESSUS probabilistic structural analysis computer program combines state-of-the-an

pmbabilistic algorithms with general-purpose structural analysis methods to compute the
probabilistic response and the reliability of engineering structures. Uncertainty in loading,
material properties, geometry, boundary conditions and initial conditions can be simulated. The

structural analysis methods include nonlinear finite element methods, boundary element

methods, and user-written subroutines. Several probabilistic algorithms are available such as the

advanced mean value method and the adaptive importance sampling method.

The application of the code includes probabilistic structural response, component and system

reliability and risk analysis of structures considering cost of failure. Figure 1 summarizes the
overall capabilities of NESSUS. As seen in the figure, NESSUS contains an integration of

probabilistic methods with nonlinear finite element and boundary element methods. A general

interface for defining random variables is included. A variety of probabilistic results can be
obtained from the analysis of a user-defined structural model.

Combined Stress and Strength Models

The previous version of NESSUS (version 6.2) was able to perform a reliability analysis of a
structure when the failure mode is strength exceeding a stress. However, it required the user to

develop a model for the strength portion of the g-function using a user subroutine. Another

option was to define the strength (i.e., yield stress) as a single random variable. A material

strength degradation (lVlSD) model has been implemented in NESSUS to provide for an

alternative material strength capability. All input for the MSD capability is included in the

NESSUS/PFEM input file. All previous capabilities in NESSUS for defining the response
function are still available.
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Random Variables

Loads
- Forces
-Pressures

-Temperatures
-Vibrations (PSD)

Material Properties
-Moduli
- Poisson's ratio
-Yield stress
- Hardening pammetem
- Matedal odenteUon

Geometry
User-defined

ProbabilisUc Methods

Fast Probability Analysis
-Advanced mean-value
-First and second order
- Fast convohjN_

Samp_in0
-Standard Monte Carlo
- Latin hypercu_
-Adaptive impoam_e

ProbabiltsUc Fault Tree

Pmbabatyof
Crop Rumm

"iIS
8mvkaUfe

ProbabillsUc Results

-Full probability distdbultan
-ComponanVs_0kH.oderealty
-System/mulUple-modes reliability
- Probabills_ sensitivities
- Probabilty-bassd costs

Performance Functions

-Structural mponmm
stress, strain, disp., freq., etc.

-Fatigue and fracture lifo
-Creep rapture We
- User-ddned sulxoutines
-External analysis programs

(requires custom-made Interlace)

Figure I. NESSUS Capabilities

Analysis Types
Static

Transient dynamics

Buckling
Vibrations
Nonlinearities

- Plasticity
-large displacements

Element Library
Beam
Plate

Plane strain
Plane stress

Axisymmetdc
3D solid
Enhanced solids

2. Objectives and Accomplishments

This report describes the work performed on the project entitled "NESSUS Enhancements and

Technology Support." This project is in support of the NASA grant entitled "Research and

Education in Probabilistic Structural Analysis and Reliability" awarded to the University of

Texas at San Antonio. Southwest Research Institute's (SwRI) tasks under this project were:

1. Provide consulting support for NESSUS-related activities,

2. Ensure that research and educational results can be integrated into NESSUS and that

the new capabilities are compatible with previous ones,

3. Implement an identified suitable material model in NESSUS,

, Implement convergence checks into NESSUS for most probable point (MPP) based

methods, and

5. Correct the sampling bias in the PROMISS computer software.

Under this contract, SwRI has successfully implemented the material strength degradation model

and convergence checks in NESSUS and the associated documentation has been updated for the

new capabilities. The PROMISS computer code was modified to correct a sampling bias.

Consulting support for NESSUS-related activities was provided to UTSA researchers and SwRI

assisted UTSA in instructing two undergraduate courses dealing with NESSUS. These tasks
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were completed within the allocated funding. The following sections describe the completed

tasks.

3. Material Model Implementation in NESSUS

3.1 Material Strength Degradation Model

The multi-factor equation for material strength degradation (MSD) has been implemented in

NESSUS using the NZFUNC subroutine that was initially developed for predefined resistance

models. All input for the MSD model is in the NESSUS/PFEM input deck using a keyword

interface consistent with previous versions of NESSUS. The required input is fully described in

an updated version of the NESSUS/PFEM User's manual. In addition, all previous capabilities

for defining the response function in NESSUS are still available.

This MSD model is based on the multi-factor equation defined in Reference 2. This is an

empirical equation and the coefficients are defined using test data and regression. Reference 2

provides values for Inconel 718. The model is currently set up for five fixed effects and 12 user
defined effects. These effects are

• Temperature

• High cycle mechanical fatigue

• Low cycle mechanical fatigue

• Creep

• Thermal fatigue

• Up to 12 user defined effects

The form of the equation is

s r -- '- _ ¢-a
Temperature HCF LCF Creep Themud Fatigue User

Where T is temperature, N is cycles, t is time, and A is used for user defined generic quantities.

The lower case exponents are the empirical material constants for each effect. The U subscript

refers to an ultimate value, the O subscript is the reference value, and the unscdpted term is the
current value for the effect.

To increase model sensitivity for any effect as discussed in Reference 2, a log transformation can

be introduced. For Inconel 718, all effects except temperature use the log transformation and
have the form:
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For other materials, the nature of the data will dictate the use of the log transformation. The

effects to be used and the model type (log transformation) are defined in the Z-function

definition section of the PFEM input f'fle. Any combination of effects can be selected and any of

the terms can be considered random if desired.

The random variables used in MSD model can also be used in the computational model. For

example, if temperature is a random variable, it can be a temperature loading on the finite

element model (contributing uncertainty to the stress) and a term in the material strength model

(contributing uncertainty to the strength).

The form of the Z-function used by NESSUS is

[Au - A ]"z- Son "_-&o - o

where

So
A_u

Aio

Ai

ai

(y

is the reference value of material strength

is the ultimate value of the particular effect

is the reference value of the particular effect

is the current value of the particular effect

is the empirical material constant for the particular effect

is the structural response, i.e., stress

3.2 Material Strength Degradation Model Input

The material strength degradation model input is described in the NESSUS/PFEM user's

manual. The section on predefined resistance models describes the MSD model and all keywords

used are defined in the keyword section of the manual. An example problem is presented in the

next section to assist with using this new capability.

3.3 Example Problem

The example problem is to compute S/So for two effects, high cycle mechanical fatigue and high

temperature. The equation for these two effects is

s
= L7o LT- j < o)J
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The formulation defined in NESSUS is

z= :-. too _
LOG ( N u) LOG (No)J

By defining S to be 1.0 and not including a computational model to compute stress (o = 0.0),
then NESSUS is solving the problem for S/So. The random variables are defined in Table 1

Table 1. Random Variable Definitions

Effect

High Cycle

Mechanical

Fatigue

(at 75 °F)
High

Temperature

(at 1000 °F)

Symbol

Nu

N

No

W

Tu

T

To

Q

Distribution

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Standard

Mean Deviation

1.OxlOt° cycles

2.5x 10 s cycles

0.25 cycles
0.3785

2369.0 °

1000.0 °

75.0 °
0.2422

1.0x 109 cycles

2.5x 104 cycles

0.025 cycles
0.0114

236.90 °

100.00

7.5 °

0.0088

The relevant NESSUS input for this problem is shown in Figure 2. Note that to consider a term

in an effect random, the alphanumeric name must match the name in the RVDEFINE input. An

example of this is the highlighted NU variable shown in both the ZFDEFINE section and the

RVDEFINE section in Figure 2.
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*ZFDEFINE

*EXPLICITMODEL 8

1,2,3,4,5,6,7,8

*ZFUNCT 3 0

*MSDM 1.0 (So}

TEMP LINEAR TU T TO QQ

HCF LOG _ N NO S

END

*END

*RVDEFINE

*DEFINE 1

NU

1.0El0 1.0E9 NORMAL

*DEFINE 2

N

2.5E5 2.5E4 NORMAL

*DEFINE 3

NO

0.25 0.025 NORMAL

*DEFINE 4

S

0.3785 0.0114 NORMAL

*DEFINE 5

TU

2369.0 236.9 NORMAL

*DEFINE 6

T

i000.0 100.0 NORMAL

*DEFINE 7

TO

75.0 7.50 NORMAL

*DEFINE 8

QQ

0.2422 0.0088 NORMAL

Figure 2. NF_..qSUS Input for Example Problem

The cumulative distribution function is shown in Figure 3.
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3
2

0

n -2
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0.45 0.5 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Lifetime Strength

-- NESSUSAMV+ -- NESSUSAMV+ • PROMISS

Figure 3. CDF for Example Problem

4. Convergence Checks Implementation in NESSUS

The convergence criteria have been improved for the most probable point based methods (MPP)
in NESSUS, specifically for the advanced mean value method (AMV+) and the first order

reliability method (FORM). In addition, two new keywords have been added to allow the user
more control over the tolerances used to determine convergence. Default values for all

tolerances are still available but there are times when these may need to be adjusted. The first

order reliability method (FORM) in NESSUS is the cornerstone of several other methods. The

following methods use the most probable point (MPP) as a starting point for the probability
calculation:

second order reliability method (FORM)

fast probability integration (FPI)
linear based adaptive importance sampling (AIS 1)

curvature based adaptive importance sampling (AIS2)

Harbitz importance sampling (ISAMF)

The FORM or FPI method is also used in the AMV+ procedure to compute the probability based

on the approximate function.

The FORM uses the Rackitz-Feissler optimization algorithm to locate the MPP. While this is an

efficient method and works well for most well behaved problems, it is not guaranteed to

converge. There have been several instances where the FORM solution has not calculated the

correct results. In many cases this is because of an unobtainable performance value. The

previous version of NESSUS did not cheek the Z value to insure that the located MPP was on the
limit-state function. The p-level algorithm using FORM as implemented in NESSUS uses a
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quadratic fit of the CDF to determine the Z value for the input probability value. New

convergence checks and additional control over the convergence checks have been implemented.

Similar convergence criteria have been implemented in NESSUS for the AMV+ and FORM

algorithms. The convergence criteria is different when using the p-level (user inputs a probability

level and NESSUS computes the performance value) or z-level (user inputs a performance value

and NESSUS computes the probability value) algorithms. Further details about the convergence

criteria and new keyword options are contained in the updated NESSUS documentation. The

following convergence criteria are implemented in NESSUS for the AMV+ and FORM

algorithms.

FORM Convereence Criteria

For the z-level algorithm convergence is defined as

a) the relative change in I_ is less than a default (0.0001) or user specified tolerance,

beta_tol,

I /_'-/_,-t l< beta_tol

Pi-I

(note that beta_tol is used for [3<4.0 and 10" beta_tol for l_>4.0)

AND

b) the difference in the computed value of Z and the input value of Z* is less than a

maximum allowable tolerance, ztol, times the approximate standard deviation, ¢r

(the default is 0.1301)

Iz - Z'[ < ztol- ocv

AND

c) the measure of the angle between the MPP's from the last two iterations, O, is less

than a maximum allowable (default of 30 ° or user defined). 0 is defined as cos 0 =

• _-t where _ are the direction cosines to the MPP from iteration i.

For the p-level algorithm convergence is defined as

a) the relative change in z is less than a default (.001) or user specified tolerance, ztol,

times the approximate standard deviation, cry,,

AZ < ztol. o,_

AND
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b) the measure of the angle between the MPP's from the last two iterations, 0, is less

than a maximum allowable (default of 30 ° or user defined). 0 is defined as cos 0 - ai

• 0_., where _ are the direction cosines to the MPP from iteration i.

AMV+ Convergence Criteria

For the z-level algorithm convergence is defined as

a) the relative change in [3 is less than a user specified tolerance, beta_tol (default is

0.01)

[< tol
i-I

AND

b) the relative change in the computed value of Z compared to the input value of Z* is

less than a maximum allowable, ztol (default is 0.01),

AND

c) the measure of the angle between the MPP's from the last two iterations, O, is less

than a maximum allowable (default of 30 ° or user defined). 0 is defined as cos 0 = o_

* o_.l where o_ are the direction cosines to the MPP from iteration i.

For the p-level algorithm convergence is defined as

a) the relative change in z is less than a default (0.01) or user specified tolerance, z_tol,

IZ,-Z,_, I< z_tol

Zi-I

AND

b) the measure of the angle between the MPP's from the last two iterations, 0, is less

than a maximum allowable (default of 30 ° or user defined). 0 is defined as cos 0 = o_

• o_.t where o_ are the direction cosines to the MPP from iteration i.
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5. PROMISS Code Update

The PROMISS computer program determines the random strength of an aerospace propulsion

material due to a number of random effects such as high and low cycle fatigue, temperature,

creep, and thermal fatigue. The implementation of the material strength degradation model in

NESSUS was verified using data for Inconel 718 (Reference 2) and compared to the cumulative

distribution function. The NESSUS computed CDF did not match the results using PROMISS.

Upon further investigation of NESSUS and PROMISS, it was found that the sampling scheme in

PROMISS was incorrect. The same starting seed was used for sampling each random variable.

This was corrected in the updated version of PROMISS and test cases were developed and

exercised for normal, lognormal, Weibull, and nominal variables. In addition for testing

purposes, input and output files were given a common f'de name with appropriate extensions.

6. Support of NESSUS Activities at UTSA

Southwest Research Institute (SwRI) supported UTSA in the use and understanding of the

NESSUS program. In particular, many questions were answered about the NESSUS input and

output in support of Mark Jurena's master's thesis research. Also, questions were answered and

assistance provided in developing a suitable problem for an undergraduate course.

7. Support of Educational Activities at UTSA

Southwest Research Institute (David Riha) provided two lectures for the UTSA course ME 4653

"Finite Element Applications in Sofid Mechanics and Design" describing the NESSUS computer

program capabilities and several example problems (Summer 1998 and 1999). SwRI also

assisted with computer laboratories associated with these classes where the students used

NESSUS to compute the probabilistic distribution of stress of a simply supported beam.

8. Conclusions

Previous versions of NESSUS required the user to develop a user subroutine to model the

strength portion for a structural reliability analysis or use a single random variable for the

strength (i.e., yield stress). The material strength degradation model (MSD) has been

successfully implemented and tested in the NESSUS computer program. The MSD model

provides a new capability in NESSUS in that there is now a material strength model option for

performing reliability analysis with NESSUS that is defined by keywords in the NESSUS input

file. All previous capabilities for defining the response function are still available in NESSUS.

After correcting a sampling bias in the PROMISS code, NESSUS and PROMISS provide the
same results.

The convergence criteria have been improved for the most probable point based methods (MPP)

in NESSUS. Specifically for the advanced mean value method (AMV+) and the first order

reliability method (FORM). In addition, two new keywords have been added to allow the user

more control over the tolerances used to determine convergence. These improved convergence

checks will help prevent NESSUS from providing wrong results. This information could be used
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to switch to mother method to locate the MPP. Future enhancements to NESSUS may include

automatically switching to another MPP search method when the solution does not convergence.

Southwest Research Institute also aided the researchers at UTSA with the use of NESSUS in

explaining the input and output of the NESSUS program. In addition, SwiLl assisted with two

undergraduate courses at UTSA by providing lectures about NESSUS and assisting with

computer laboratories in which the NESSUS program was used.
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1 Introduction

These release notes describe the modifications and enhancements of version 6.3 of the NESSUS

probab_listie structural analysis code. The relevant sections of the NESSUS documentation have

been updated for the new features. The new features in version 6.3 include:

• Material Strength Degradation Model

• MPP (AMV+ and FORM) Convergence Enhancements

Other Modifications and Enhancements

Tile following sections describe these enhancements and modifications in more detail.

appendix at the end of this document lists the modified NESSUS subroutines.

The

2 Material Strength Degradation Model

The previous version of NESSUS (version 6.2) was able to perform a reliability analysis of a
structure when the failure mode is strength exceeding a stress. However, it required the user to

develop a model for the strength portion of the limit-state function using a user subroutine.

Another option was to define the strength (i.e., yield stress) as a single random variable. A

material strength degradation (MSD) model has been implemented in NESSUS to provide for an

alternative material strength capability.

The multi-factor equation for material strength degradation (MSD) has been implemented in

NESSUS using the NZFUNC subroutine that was initially developed for predefined resistance

models. All input for the MSD model is in the NESSUS/PFEM input deck using a keyword

interface consistent with previous versions of NESSUS. The required input is fully described in

an updated version of the NESSUS/PFEM User's manual. In addition, all previous capabilities

for defining the response function in NESSUS are still available.

This MSD model is based on the multi-factor equation defined in Reference 1. This is an

empirical equation and the coefficients are defined using test data and regression. Reference 1

provides values for lnconel 718. The model is currently set up for five fixed effects and 12 user
defined effects. These effects are
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Temperature

High cycle mechanical fatigue

Low cycle mechanical fatigue

Creep

Thermal fatigue

Up to 12 user defined effects

117



The form of the equation is

,,,,,-,,,1r,,,,.,-,,,r,_,,_--.,.] r,,,,-,,1S=S. 2T-o N,,-NoJ LlV'oZN;'-';,JLt,,-t,, N_ N;; L_--4,J
Tcmpcraturc HCF LCF Creep Thermal Futiguc User

Where T is temperature, N is cycles, t is time, and A is used for user defined generic quantities.

The lower case exponents are the empirical material constants for each effect. The U subscript

refers to an ultimate value, the O subscript is the reference value, and the unscripted term is the

current value for the effect.

To increase model sensitivity for any effect as discussed in Reference 1, a log transformation can

be introduced. For lnconel 718, all effects except temperature use the log transformation and

have the form:

S r LOG(A,fj)-LOG(A,) 1"

s= OL.L-d-d-.._,,_:c-o--.d_i.j

For other materials, the nature of the data will dictate the use of the log transformation. The

effects to be used and the model type (log transformation) are defined in the Z-function

definition section of the PFEM input file. Any combination of effects can be selected and any of

the terms can be considered random if desired.

The random variables used in the MSD model can also be used in the computational model. For

example, if temperature is a random variable, it can be a temperature loading on the finite

element model (contributing uncertainty to the stress) and a term in the material strength model

(contributing uncertainty to the strength).

The form of the Z-function used by NESSUS is

HA,u-A,1°,- So [_ j -_7,

-- Ajo

where

A_u

d_o

Ai

Ot

U

Is the reference value of material strength

is the ultimate value of the particular effect-

is the reference value of the particular effect

Is the current value of the particular effect

ts the empirical material constant for the particular effect

Is the structural response, i.e., stress
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2.1 Material Strength Degradation Model Input

The material strength degradation model input is described in the NESSUS/PFEM user's

manual. The section on predefined resistance models describes the MSD model and all keywords

used are defined in the keyword section of the manual. An example problem is presented in the

next section to assist with using this new capability.

2.2 Example Problem

The exanlple problem is to compute S/So for two effects, high cycle mechanical fatigue and high

temperature. The equation for these two effects is

[Ttj-T Oj LOG (N u) - LOG (N o)j

The formulation defined in NESSUS is

- ooZ = OLTu _ _. LOG (N u) LOG (-_o) ] cr

By defining S to be 1.0 and not including a computational model to compute stress (or = 0.0),
then NESSUS is solving the problem for S/So. The random variables are defined in Table 1.

Table 1. Random Variable Definitions

Standard

Effect Symbol Distribution Mean Deviation

High Cycle

Mechanical

Fatigue

(at 75 *F)

High

Temperature

(at 1000 *F)

Nil

N

No

Normal

Normal

Normal

1.0× 10 m cycles

2.5x 105 cycles

0.25 cycles

1.0x i 0 v cycles

2.5x 104 cycles

0.025 cycles
W

Tu

T

To

Q

Normal

Normal

Normal

Normal

Normal

0.3785

2369.0 °

1000.0 °

75.0 °

0.2422

0.0114

236.90 °

100.0 o

7.5 °

0.0088
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The relevant NESSUS input for this problem is shown in Figure I. Note that to consider a term

in an effect random, the alphanumeric name must match the name in the RVDEFINE input. An

example of this is the highlighted NU variable shown in both the ZFDEFINE section and the

RVDEFINE section in Figure 1.

*ZFDEFINE

*EXPLICITMODEL 8

1,2,3,4,5,6,7,8

*ZFUNCT 3 0

*MSDM 1.0 {So)

TEMP LINEAR

HCF LOG NU N

END

*END

*RVDEFINE

_DEFINE 1

NU

1.0El0 I.OE9 NORMAL

*DEFINE 2

N

2.5E5 2.5E4 NORMAL

*DEFINE 3

NO

0.25 0.025 NORMAL

*DEFINE 4

S

0.3785 0.0114 NORMAL

*DEFINE 5

TU

2369.0 236.9 NORMAL

*DEFINE 6

T

I000.0 I00.0 NORMAL

*DEFINE 7

TO

75.0 7.50 NORMAL

*DEFINE 8

QQ
0.2422 0.0088 NORMAL

TU T TO QQ

NO S

Figure 1. NESSUS Input for Example Problem

The cumulative distribution function is shown in Figure 2.
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Figure 2. CDF for Example Problem

3 MPP (AMV+ and FORM) Convergence Enhancements

The convergence criteria have been improved for the most probable point based methods (MPP)
in NESSUS, specifically for the advanced mean value method (AMV+) and the first order
reliability method (FORM). In addition, two new keywords have been added to allow the user
more control over the tolerances used to determine convergence. Default values for all
tolerances are still available but there are times when these may need to be adjusted. The first

order reliability method (FORM) in NESSUS is the cornerstone of several other methods. The
following methods use the most probable point (MPP) as a starting point for the probability

calculation:

second order reliability method (FORM)

fast probability integration (FPI)

linear based adaptive importance sampling (AISI)

curvature based adaptive importance sampling (AIS2)

Harbitz importance sampling (ISAMF)

The FORM or FPI method is also used in the AMV+ procedure to compute the probability based

on the approximate function.

The FORM uses the Rackitz-Feissler optimization algorithm to locate the MPP. While this is an

efficient method and works well for most well behaved problems, .it is not guaranteed to

converge. There have been several instances where the FORM solution has not calculated the
correct results. In many eases this is because of an unobtainable performance value. The

previous version of NESSUS did not check the Z value to insure that the located MPP was on the
limit-state function. The p-level algorithm using FORM as implemented in NESSUS uses a
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quadratic fit of the CDF to determine the Z value for the input probability value. New

convergence checks and additional control over the convergence checks have been implemented.

Similar convergence criteria have been implemented in NESSUS for the AMV+ and FORM

algorithms. The convergence criteria is different when using the p-level (user inputs a probability

level and NESSUS computes the performance value) or z-level (user inputs a performance value

and NESSUS computes the probability value) algorititms. Further details about the convergence

criteria and new keyword options are contained in the updated NESSUS documentation. The

following convergence criteria are implemented in NESSUS for the AMV+ and FORM

algorithms.

3.1 FORM Convergence Criteri_

For the z-level algorithm convergence is defined as

a) the relative change in 13 is less than a default (0.0001) or user specified tolerance,
beta_tol,

I fl,-fl,-, ISbet a tol

Pl-!

(note that beta._tol is used for 13<4.0 and 10' beta_tol for 13>4.0)

AND

b) the difference in the computed value of Z and the input value of Z* is less than a

maximum allowable tolerance, ztol, times the approximate standard deviation, o-m,

(the default is 0.001)

AND

IZ - Z" i < ztol. o-m,

c) the measure of tile angle between the MPP's from the last two iterations, O, is less

than a maximum allowable (default of 30* or user defined). 0 is defined as cos 0 = ai

• _ti.i where ai are the direction cosines to the MPP from iteration i.

For the p-level algorithm convergence is defined as

a) the relative change in z is less than a default (.001) or user specified tolerance, ztol,

times the approximate standard deviation, am, ,

AND

NASA/CR--200 !-2 ! I I 12
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b) the measure of tile angle between the MPP's from the last two iterations, 0, is less

than a maximum allowable (default of 30 ° or user defined). 0 is defined as cos 0 = ai

• cti.i where cti are the direction cosines to the MPP from iteration i.

3.2 AMV+ Convergence Criteria

For tile z-level algorithm convergence is defined as

a) the relative change in 13 is less than a user specified tolerance, beta_tol (default is

O.Ol)

Ip, I
'_<beta tol

AND

b) the relative change in tile computed value of Z compared to tile input value of Z* is

less than a maximum allowable, ztol (default is 0.01),

Z-Z'[ <z toi

Z

AND

c) the measure of the angle between the MPP's from the last two iterations, 0, is less

than a maximum allowable (default of 30* or user defined). 0 is defined as cos 0 = txi

• tzi.i where cti are the direction cosines to the MPP from iteration i.

For the p-level algorithm convergence is defined as

a) the relative change in z is less than a default (0.01) or user specified tolerance, z_tol,

IZI-Z_-_ J<_z tol

Zi_l

AND

b) the measure of the angle between tile MPP's from the last two iterations, 0, is less

than a maximum allowable (default of 30* or user defined). 0 is defined as cos 0 = cti

• ai-i where cti are file direction cosines to the MPP from iteration i.
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4 Other Modifications and Enhancements

The following lists identifies several other corrections and enhancements implemented in
NESSUS version 6.3:

• corrected error check on Z for AMV+ analysis

• corrected error for implicit sampling using Harbitz method

• changed default tolerance from 0.2 to 0.01 on Z check for AMV+

• tightened tolerance on chi square distribution iteration

• skip integration for special cases ofthe maximum entropy distribution (e.g. uniform)

• check for valid FPI methods for AMV analyses, correlated variables and implicit
sampling

• corrected open statement error in SIMFEM

5 References

° Bast, C. and Boyce, L., "Probabilistic Material Strength Degradation Model for Inconel 718

Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical

Fatigue, Creep and Thermal Fatigue Effects," NASA CR 198426, NASA Lewis Research

Center, Cleveland, Ohio, November 1995.
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6 Appendix

The following tables describe the modified subroutines for NESSUS 6.3.

Table 2. Modified NESSUS Subroutines for Port from Cray to SGI

routines

Description modified

replaced CPU time system call for SGI quit.f

date and time system call on SGI dater.f

double precision flag change for 32 bit machine (IDP) nessus.f

modified arguments as required on SGI for call to GETARG 'prompt.f

replaced CPU time system call for SGI timer.f

initialize ICREAD=5 in nessus main routine nessus.f

set NDBREC to 80 (file record size) intint.f

Table 3. Modified NESSUS Subroutines for the Material

Strength Degradation Model (MSDM)

routines

Description modified

added predefined equation 3 for material strength degradation model nzfunct.f

added call to rdmfie to read MSDM input redpfm.f

new routine to read MSD model input rdmfie.f

added call to msdump pfdump.f

new routine to echo MSD model input msdump.f

added test model respon.f

Table 4. Modified NESSUS Subroutines for AMV Convergence Enhancements

Routines

Description modified

added input echo for *CONVERGENCE_CONTROL card pfdump.f

added user control over convergence tolerances pfemal.f

added user control over convergence tolerances pfnopt.f

added user control over convergence tolerances pfyspt.f

added input and checks *CONVERGENCE_CONTROL card redpfm.f

added user control over convergence tolerances rfemal.f

added user control over convergence tolerances uconv.f

added write statement for new convergence tolerances wrtmov.f
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Table 5. Modified NESSUS Subroutines for FORM Convergence Enhancements

routines

Description modified

added z and 0 convergence checks and user control over tolerances fit.f

added input for the *FCONVERGENCE card redmod.f

added z and 0 convergence checks and user control over tolerances zlevei.f

added write of *FCONVER.GENCE card to FPI input deck fpiter.f

Table 6. Modified NESSUS Subroutines for Other Modifications

routines

Description modified

Changed version number and release date nessus.f

Corrected format for year 2000 header.f
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Table 7. Modified NESSUSSubroutines for CodeCorrections

i

routines

Description Correction modified

Bus error when using Harbitz method

through PFEM. Only affects jobs

using ISAMF and IMPLICIT during a

PFEM run.

Error check on Z incorrect when Z is

negative for AMV+ analysis

hnproved tolerance

Allow small negative eigen values

when transforming from correlated

variables to independent variables.

Can appear for very highly correlated
random variables where some

independent variables are expected to

have variance at or very close to zero.

Caused by the numerical algoritlun.

Tighten tolerance on chi square
distribution

Skip integration of maximum entropy

distribution if the pdf is constant

(uniform distribution).
Checks for valid FPI methods for

AMV analyses, correlated variables,

and implicit sampling.

Open too many files on some systems

when running SIMFEM

Passes single precision number as

double precision to XINV (for

confidence interval)

Incorrectly made AD a small number

RWORK array not dimensioned

in FASTMC. Add RWORK to all

calls to FASTMC and other

calling subroutines.

cdfglb.f
cdfloc.f

cintvl.f

fastmc.f

xfpi.f
zlevel.f

Take absolute value of ZFUN uconv.f

when making check.

change ZERR_TOL form 0.2 to uconv.f
0.01

rottrn.fSet the eigen value to lOe-10

times the maximum eigen value

when negative and if the absolute
value is within 1/1000 of the

maximum eigen value value.

change convergence criteria from
IE-4 to IE-8 and increase

iterations from 10 to 50.

Add check for

distribution

constant

Added checks after reading input.

add a close statement for the

scratch file

set variable P95

chi.f

cdf6.f

redpfm.f

simres.f

removed statement

fastmc.f

decomp.f
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Abstract
This paperdealswith stressanalysisof acantileverbeam. Theanalysiswasperformed
threedifferentways. Thefirst analysisof thestressesat different regionswithin the
bodyweredoneusingsimplebeamtheory. This is an algebraic way of arriving at the

stresses without having to do extensive calculations. Stress components were calculated

at the location of maximum stress. The maximum stress within the beam was found to

occur at the fixed end, it happened to be the normal stress in the longitudinal direction of

the beam. Its value was calculated to be 20.2 k.s.i. The second way the stress was

calculated was by modeling and analyzing the same beam using NESSUS, a probabilistic

finite element code. NESSUS accounts for model uncertainty by allowing the user to

input one or more random design variables. Random variables have a range of possible

values and associated probabilities of occurring. Three parameters were modeled as being

random: the beam's length, its height, the horizontal load, and the vertical load. Thus, the

output will also exhibit uncertainty. Three runs were performed using NESSUS. For the

first run, the beam was discretized into 4 plane stress elements. The displacement

method of analysis was used; hence, NESSUS assumed a displacement field form. The

maximum stress occurred at the fixed end and was found to be the normal stress in the x-

direction. It's average value was 15 k.s.i, which is a 25.7% difference with respect to

simple beam theory. For the second run, the beam was modeled with 40 plane stress

elements. The displacement method of analysis was also used for this run. The

maximum stress was noted to occur in the same location and was the normal stress in the

x-direction. It's average value was 19.5 k.s.i, which is a 3.5% difference with respect to

simple beam theory. The third and final way of analyzing the beam in NESSUS was by

modeling the beam with 4 plane stress elements, except the mixed method of analysis was

used by NESSUS. This means that a stress and a displacement field form were assumed

by the code. The maximum stress occurred in the same location and was in the same

direction. It's average value was 20.3 k.s.i, which is a 0.5% difference with respect to

simple beam theory. The final way of calculating the stresses within the beam was done

by writing a finite element code, which used the finite element method by way of

weighted residuals on the plane stress elasticity equations. The displacement method was

used, and the beam was discretized into 40 plane stress elements. The Galerkin-Bubov

approach was implemented; hence, the weight functions were chosen from the same

shape functions used to bilinearly approximate the displacement field vector. Also,

isoparametric mapping was used; thus, because bilinear shape functions were used to

approximate the displacement field, the global coordinates were bilinearly mapped to the

local coordinates. The maximum stress occurred at the same location and is also the

normal stress in the x-direction. It's value was calculated to be 18.8 k.s.i, which is a

3.59% difference with respect to the 40 element, displacement method run performed by

NESSUS. A cumulative distribution function was obtained for the 3rd mixed method run.

From this probabilistic output, one was able to deduce that there was a 99.99%

probability that the maximum normal stress in the x-direction will be less than or equal to

30.4 k.s.i. Therefore, there is a probability smaller than 1/10000 that the beam will fail by

yielding.
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Introduction

A Cantilevered beam is useful model of reality that engineers use to analyze real

structures or parts of real structures. Centrifugal pump impellers and Space Shuttle Main

Engine turbopump turbine blades are examples of structures that can be initially modeled

as cantilevered beam. Thus, a cantilevered beam is a good, simple model of reality that is

useful to acquire a "feel" for the stress magnitudes within a structure.

Many times one would analyze a whole or part of a system to ensure that failure

does not occur in a way that hinders the performance of the system. If a system does not

perform well when a piece of it breaks, then that is the way it fails. If a system does not

perform well when a component permanently deforms or deforms too much, then that is

its respective mode of failure. For this paper, we will ensure that a cantilevered beam

does not fail by permanently deforming, or yielding. Thus, we analyze to ensure that a

system does not fail in a certain way. The system to be analyzed here is a cantilevered

beam because it is a good model of things like a turbine blade, which is expensive; and, at

their speed of operation, some types of failure can be disastrous.

The System

The system that was analyzed was the cantilevered beam shown in Figure 1. A

characteristic of a

cantilevered beam is that the

horizontal and vertical

displacements are zero for

all points on the fixed end,

this is known as a boundary

condition. The beam was

composed of steel (ASTM-

A36). This material has

several associated average

h=3

PyffilO00

Lffi 30

Figure I. Cantilevered beam. All dimensions
are in inches and forces are in JimJmds. The beam

has a AmlL_.
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material properties. For calculations, an average modulus of elasticity and an average

Poisson's ratio of 30,000 k.s.i, and 0.3, respectively, were used. The materials average

yield strengths in tension and in shear were found to be 36 and 21 k.s.i., respectively.

The system also has certain average geometric properties: its depth is 1.0 inch, the

height is 3.0 inches, the length is 30 inches, and its area moment of inertia about the axis

normal to the page was calculated from the average dimensions to be 2.25 in 4 .

The system has two concentrated loads acting upon it, as shown in Figure 1.

These loads cause the system to deform and exhibit internal stresses. A horizontal load

and a vertical load, whose average values are 500 lbs. and 1000 lbs., respectively, are

applied to the beam's free end, at a point halfway up the height of the beam and

uniformly distributed across the thickness. Also, both loads are assumed to be applied

quasi-statically so that the dynamic effects of the load application are to be ignored; and,

the beam is considered to be in static equilibrium throughout its analysis.

NESSUS

The analysis for this system was performed using NASA Glenn Research

Center's Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) software,

a probabilistic finite element code. It has the capability of analyzing static and dynamic

problems, linear or even nonlinear problems, and it can compute the sensitivity of the

wanted output calculations with respect to small variations in the user defined random

input variables.

Three different plane stress analyses were accomplished using NESSUS.

Therefore, the following assumptions of plane stress must be true:

1. Only cr=,cr_, and cr_ are nonzero, the other 6 stress components are zero.

2. Any body force in the z direction is assumed to be zero.

3. As a result of these assumptions and Hooke's Law, which relates stress to strain, we

find that strains in the z direction (7xz and 7yz) are also zero.
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4. All variables, stresses, forces, strains, etc. are functions ofx and y only, and any

loading is assumed to be distributed uniformly across the thickness.

5. Also, from it is known that plane stress prevails in a beam that is thin with respect to

its other dimensions [3].

Therefore, since our beam shown in Figure 1 meets all of the assumptions previously

stated (as well as those for simple beam theory, which will be discussed later), the plane

stress elements in NESSUS can be used to model our beam; and, one should expect results

close to those obtained using simple beam theory.

NESSUS uses a finite element method to obtain a solution. It is an approximate

method because one cannot generally solve the differential equations that will give us all

of the stress or deformation components at every point within the body. Thus, we give

up on the hopes of an exact solution and solve the equations only at certain points within

the body. These points are known as nodes. Based on the values of our solution at these

nodes, we can estimate the solution values between the nodes.

The NESSUS code lets one enter certain parameters of our physical model as

random variables. Random variables are variables that can be any of a set of values, be

this set continuous (infinite in amount), or discrete; and, each value has an associated

chance or probability of occurring. These values and their respective chances or

probabilities of occurring form a probability distribution function (p.d.f.) for that random

variable. Table 1 shows the probabilistic input parameters to be used for all runs in

NESSUS.

Table 1. Probabilistic input parameters of the cantilever beam.

Name Symbol Distribution
Type (mean,
std. dev.)

Length L Normal in.
(30.0, 0.8)

Height h Normal in.
(3.0, 0.2)

Horizontal /9 Lognormal lb.
Load *x (500, 0.666)

Vertical p Lognormal lb.
Load "Y (1000, 0.8)

Units
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Note the distribution types used for geometric and load variables and that these

l_.d.f.s need only the mean value and the standard deviation to completely describe the

respective random variable. Using these random variables and the deterministic or single

valued parameters shown in Figure 1, several different analy_es were performed using

NESSUSI Some typical outputs that NESSUS can compute are the displacements,

velocities, accelerations, stresses and strains for each node. For this report, the stress is

the output variable and it will be in the form of a random variable. The stress output at

each user requested node will have a range of values and each value will have an associated

probability of occurring (an output p.d.f, is the result).

1st run.

The first run in NESSUS had a node scheme like that shown in Figure 2. The system

was discretized into 4 elements and 9 nodes. The displacement method was used by the

software to solve the system of equations, which means that the displacement field took

on an assumed form. This

analysis required a stress

output for each node to ensure

that the beam does not fail by

permanently deforming. For

this first run, the maximum

average normal stress on the x

face was found to be

approximately 15.0 k.s.i., it

occurred at node 1. Also, all

7 8 9

I

Figure 2.

4

Force
:ctor

Global node scheme for NESSUS 1st run:

element, displacement method.

shear stresses within the beam were less than 1 k.s.i.
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2nd run.

The second run in NESSUS had the same nodal scheme as the first run. The system

model can be seen in Figure 3. This time, the'mixed m'ethod of analysis was used by the

software in solving the system of equations. This means that the software assumes a

displacement and stress

field form. For this 4-

element mixed-method run,

the maximum average

normal stress on the x face

was found to occur at node

1, and was found to be

approximately 20.3 k.s.i..

The average shear stresses

were all found to be less

9

Force

1 3IL "--

Figure 3. Global node scheme for NESSUS 2nd run:

4 element, mixed method.

f

than 1 k.s.i.

3rd run.

The third and final run that was performed in NESSUS had a much finer mesh or node

scheme as is shown in

Figure 4. Not all elements

are shown. The beam was

divided into 40 finite

elements, the node

numbers are shown in O's.

There are 20 element edges

that are equally spaced

across the beam's length,

and 2 element edges that

Force

Y Vector

I (1)

]_.20
the

Figure 4.
4O

8 9 (63)

2 elements
across
height

2 (II) 3 (21) s

elements across .._
length

Global node scheme for 3rd NESSUS run:

element, displacement method.

are equally spaced across the beam's height. The element aspect ratio for this beam is

NASA/CR--2001-211112 138



1.5:1. This number is the ratio of the element's maximum dimension to its minimum

dimension. A conservative approach for any finite element mesh is to try to get this ratio

to be as close to 1:1 as possible. This model had a total of 63 nodes that would be

reported on in the output file of NESSUS. For this run, NESSUS used the displacement

method of analysis to calculate the results. The maximum average normal stress on the x

face of all of the 63 nodal points within the body was found to be 19.5 k.s.i. This stress

state was found to occur at node 1. Again, all shear stresses on any face at any of the

nodal points within the body were found the be less than 1 k.s.i.

How do we know that our values are correct? One way to build confidence in the

answers to any black box is to do simple calculations that give an approximate, quick, and

cheap answer. The results for the three runs mentioned were checked by using simple

beam theory.

Simple Beam Theory

This theory of analysis is also called technical or Euler's beam theory. It is based

on certain assumptions that simplify the deformation pattern so that the strain field for a

cross section of the member can be determined. The key assumption of this theory is

that plane sections before deformation (or loading) must remain plane after deformation

(or loading). This is an exact assumption for axially loaded prismatic bars, circular

prismatic torsion rods, and for prismatic beams in pure bending. This assumption

approaches reality when the shear deformation of the beam is negligible. It has been

shown that the bending deflection is about 100 times more than the shear deflection when

the length to height ratio of the beam is 10:1; and, as the length to height ratio increases

the significance of the bending deflection relative to the shear deflection also increases.

Thus, for the beam to be analyzed, simple beam theory is a justifiable method [3].

Also, note that there are two loads whose separate effects on the beam must be

superimposed in order to obtain the effects of both loads acting simultaneously. In order

to do this, one must have a linear elastic material which remains in the linear elastic range

after loading; that is, the stresses within the beam must not exceed their yielding value for
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that material. Also, the beam must exhibit small deformations. These deformations are

considered small when they produce small strains compared to unity; thus, higher order

terms involving theses small strains are also neglected [3].

The first stress calculated was the normal stress in the x direction due to the axial

load. This stress was considered constant throughout the beams length and was

calculated using the equation

Eq. 1

where trx_ is the stress on the x face in the x direction (hence the subscript), Px is the axial

load shown in Figure 1, and A is the cross sectional area of the beam.

The second stress calculated was the bending stress due to the bending moment

within the body. Note from Figure 1 that there are no pure moments applied to the beam,

but there does exist a moment at any cross section within the beam, due to the vertical

load Py and the fact that one end is fixed. The bending stress varies with x and y. It can

be calculated from the flexure formula:

M(x)y"
cr = Eq. 2

I

where M(x) is the bending moment within a cross section of the beam at x, I is the area

moment of inertia of the beam, and y' is not the coordinate used in Figure 1 but one that

has its zero at the neutral axis of the beam. Its positive direction must be the same as that

of the coordinate y; also, the moment is positive if it produces a positive curvature of the

beam (smiley face) with respect to the x coordinate shown in Figure 1 and the y'

coordinate just mentioned.

When the moments were summed about an arbitrary centroid of a cross section of

the beam, the following equation resulted

M(x) = gL- gx Eq. 3

where the only undefined term is L, the length of the beam. Note from equation 2 that the

maximum stress due to the bending moment occurs when y' is a maximum (at the outer

surface), and when the bending moment is a maximum (at the fixed end, x=0; as verified

from equation 3). Therefore, since the normal stress due to the axial load is constant
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throughout, equations 1, 2, and 3, can be combined to give the following equation that

represents the maximum total normal stress on the x face

cr_ =-P_ _(L)(-h_2) Eq. 4

A bh3_l 2

where h is the height of the beam, and bh3/(12 is the area moment of inertia for this beam.

Note, this state of stress occurs at x=0, y=0 (y' = -h_2). After substituting into equation

4 the numerical values from Figure 1, a value of 20.17 k.s.i, was obtained for the maximum

total normal stress in the x direction. Recall that the yield strength in tension for this

type of steel is 36 k.s.i; therefore, the beam remained in the linear elastic range after

loading. The shear stress was found by using the shear formula

-t'xy = _- -_--- y '2 Eq.5

where V is the shear force within a cross section of the beam, I is the area moment of

inertia of the beam, h is the beam height, and y' is the coordinate system used for the

flexure formula [ 1]. From equation 5, one can see that the shear stress is a maximum at

the neutral axis of the beam, where y' is a minimum (zero). When we plug in numerical

values into equation 5, the result for the maximum shear stress is 0.5 k.s.i, which is

nowhere close to the yield strength in shear, 21 k.s.i. Both the maximum normal (x dir)

and the shear stresses were below their respective yield stresses. Therefore, from a

deterministic standpoint, this beam does not fail by permanently deforming.

Comparing NESSUS to Simple Beam Theory

The maximum average normal stress within the body was found to be the most

significant stress. The magnitude of this stress and its nodal location from all three runs

in NESSUS, as well as the results from our simple beam theory calculations are shown in

Table 2. This table also shows the percent difference of each NESSUS run with respect

to the simple beam theory calculations and the yield strength in tension for ASTM-A36.
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Table 2. Maximum average normal stress for NESSUS runs and simple team theory calculations.

The percent difference was calculated with respect to the simple bean theory value.

Maximum Average NESSUS NESSUS NESSUS Simple Beam Respective
Stress 4 element 4 element 40 element Theory yield

Displacement Mixed Displacement strengths for
Method Method Method ASTM-A36

Node 1, normal 15 k.s.i 20.3 k.s.i. 19.5 k.s.i. 20.2 k.s.i. 36 k.s.i.

% Difference 25.7 % 0.5 % 3.5 % 0 % N/A

Note from Table 2 that when the amount of elements used to model our beam was

increased from 4 to 40 (both using the displacement method of analysis), the normal

stress approached the value obtained from simple beam theory. The percent difference

was reduced from 25.7 % to 3.5 %. The mixed method of analysis converged to 0.5% of

the simple beam theory value using only 4 elements. It took about 12 seconds of

computer time, while the displacement method of analysis needed 40 elements and about

19 seconds of computer time to get within range of the simple beam theory stress values.

Also note from the table that none of the maximum average stresses for any run exceeded

its respective yield strength of the material. Now let us compare NESSUS to a finite

element code that I wrote. However, before we do that we shall discuss the theory of the

finite element method by way of weighting the residuals.

Finite Element Method by Weighting the Residuals

Using the assumptions mentioned above in the NESSUS portion, the 3D elasticity

equations were simplified to the following governing differential equations of plane stress:

[L]r([C][L]{S})={_} Eq. 8

where L is a differential operator matrix, C is our linear elastic constitutive model for

plane stress, and the last term is the displacement vector[2]. Equation 8 can be rewritten

to show all elements of each tensor as follows

1 lOv

o_ T-

,9
o

o 3

Oy 3x

v(x,y)J
Eq. 9
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where E is the modulus of elasticity of the steel beam (30,000 ksi), and v is Poisson's

ratio (0.3).

Let us begin the method of residual weighting by premultiplying Equation 9 by a weight

function and integrating over the domain of the problem. The result is the following set of

equations

n['[W][L]r[C][L]{eS}d_= ![W]I_t dK2= t_t Eq. X0

where W is our weight function matrix. Once equation 10 was integrated by parts and we

realize that there are only nodal forces we end up with the following system of equations

_([L][Wlr)r[C][LI{6}df2= IF} Eq. Xl
fl

where F is a vector whose elements are the extemal forces acting on the system at the

nodes in for each direction[2]. For example, if a system has 63 nodes and everything

occurs in either the x or y direction (planar), then F would be a vector with 126 rows or

entries. After equation 11 is descritized by applying it to each element and summing all

of the element equations together, the next step of the finite element method is to

approximate our displacement field. For this problem, our displacement fields (u and v)

were approximated by bilinear interpolation from the nodal values. This approximation is

mathematically realized by the following equation

_U(X,y)_ N'(x'y)ui

{cS}= [.v(x,y)j= {_'} = [N]{_S'} = [i__l N,(x,y)vi

"/41 ]

v_ Eq. 12

u 2

Lo N I 0 N_ 0 N 3 0 N4 J u3

v3l
u4 I

,V4 J

where u_ and v_ are the nodal displacements of the ith node of the element e in the x and y

directions, respectively. The N's are the shape functions for the displacement fields. We

NASA/CR--2001-211 i 12 i 43



must also make the weight function more specific by setting it equal to the transpose of

the shape function matrix

[W] =[N] r Eq.13

hence, because of this step, we have used the Galerkin approach of the finite element

method[2]. When we substitute equations 12 and 13 into equation i I, and if we define an

element strain interpolation matrix as

[B]=[L][N] Eq.14

we end up with the following set of equations

[Ke]{(Se} =[_[B]r[C][B]df2_]{_5_} = {F} Eq.15

where

[K']= f[BlT[Cl[Bld_e Eq.16

is defined as the element stiffness matrix and is equal to the term to be integrated (shown

in brackets) in equation 15. The stiffness matrix now needs to be calculated. The matrix

multiplication, while time consuming, is not difficult. The integration over a two

dimensional domain is the difficult part of this step. Gauss quadrature, a typical type of

numerical integration, will be used to integrate the 64 terms of each element's 8 by 8

stiffness matrix. In order to do this, we need to change our global coordinate system

(x,y), to a local coordinate system (_'and 7/). The _'axis values range from -1 to 1 as does

the r/ axis. Bilinear maping was used to map the x and y coordinates to the ( and r/

coordinates. The resulting mapping functions, which are the same shape functions for our

field variable and our weight function, are given by the following equations

1

N,(_,rl)= -_(1-ff r/+_'rD

g,((, _) = _-(1+ ( - 77- ¢n)
Eq.17

N3(_', r/) = 1 (1 + _ + r/+ _'r/)

!(1 - (+ o- 0))g_((,0)
4
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Note that in order for the coordinate mapping to be complete, the limits of integration

must change from -1 to + 1 for both integrals, and our integration variables must change in

the following manner

d_-2 e =.dx . dy = Jel. d_ " do Eq. 18

where J is the Jacobian matrix[2]. The determinant of this matrix is given by the

following equation

o3xeo3y e o3xeo3y eI

[je _ °3_ " o_ o_ o3_" Eq. 19

where x and y are the global coordinates of the element whose stiffness matrix is being

calculated, given as a function of (and r/. The resulting equation for the element stiffness

matrix comes about by substituting equation 19 into 18, and then 18 into 16.

I 1 (oqxe 03ye 03xe Oye_ 1 1[ge]= J" _[B]T[c][B] O_ tT_ oqO 0 c _dl'l= _ f fiJ(C'rl)dffdT] Eq.20
-1-1 -I-1

where the integrand in equation 20, denoted by ftj ((, r/), is the function used by Gauss

quadrature. The integration operators will be replaced by the sum of the product of the

function evaluated at a certain _"and 77 value and the weight values for those Gauss points.

Therefore, since 2nd order Guass quadrature is sufficient for each coordinate direction [2],

equation 20 then becomes

2 2

[Kij e] = _ _fij((g,Tlh)WgWh Eq.21
g--lh=l

where El = rh = 0.5773502692, _'z =/72 = -0.5773502692 and the weight functions, w's, are all

equal to 1.0. Using equation 2 l, an element stiffness matrix can be obtained for all

isoparametric quadrilateral elements. Remember we are trying to analyze a cantilevered beam

and get results comparable to that of NESSUS and simple beam theory. Therefore, our system

will be exactly like the 40-element beam modeled in NESSUS, is shown again in Figure 5.

Therefore, all 40 element stiffness matrices can be obtained; and, since all of the elements look

the same, all the stiffness matrices will look the same. Each element stiffness matrix will be

multiplied by a nodal displacement vector to equal an external nodal force vector. Now the

question is, how is the global stiffness matrix assembled? Well, due to our procedure in solving
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the plane stress equations, the

iv Im r¢
_-_" Y x eclor

Figure 5. 40 element node scheme for FEA program.

k2v' V22 J23v, v23

u, ¢ ¢ A- ,,

.12_x, 2_____.1____,/2._x' _3

.fl.,-,ul---> u:

.fir,V1 /'_ , V-,

Figure 6. Elemen! 1.

nodal displacement vector tbr each

element is a list o_'displacements

in the x and y direction, for each

node in a counter clockwise

manner. Also. the nodal force

vector for each element is a list of

external nodal forces in the x and y

direction, tbr each node in a

counter clockwise manner. For

exmnple, element 1 of Figure 5.

shown in Figure 6. has nodes t "_

23, and 22, associated with it.

l'herefore, the finite element

system of equations for element 1

looks something like

terms above the stiffness matrix to account for its columns, we arrive at the following set of

equations

'*1 Vl '12 v2 u23 v23 u22 L'22

KIlt KII2 Kll3 KII4 KI15 K z K l K _16 17 18

.-I
Kw21 K 2*;

K145

K_8_ K_ss

II l

V 1

U

v 2

tg23

i;23

lt22

v22

• Jql X

Ji ,.

J2sx

A3y

/22,

.t221'

Eq.22
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This can be done for all 40 elements, except the superscript 1 changes to the element

number, and the subscripts 1, 2, 23, and 22 of the nodal displacement and force vector

terms respectively change to the 1st, 2nd, 3rd, and 4th node number of the associated

element. The 1st node of an element is the lower left node. Proceeding in a counter-

clockwise manner one can then obtain the 2nd through the 4th element node number.

Note that in equation set 22, any term in the stiffness matrix can be described by its row

and column, which is in terms of the nodal displacement vector components. For

example, in equation 22,

K145 = Kv2.u23 Eq.23

Therefore, when this term is moved to the global set of equations it is placed in the slot

given by the terms of the right hand side of equation 23. After all the terms of the

stiffness matrix in equation 22 were assembled in the global set of equations, the result is

the following incomplete set of equations

U 1 V I U 2 V 2

Kl_l Kt_2 KIj3 Kll4

g121 K122 KI23 KI24

KI31 K632 KJ33 Kt34

Ka41 K_42 KJ43 KI44

U22 V22 U23 V23

KIlT Kits Kit5 KIt6

KI27 Ki28 KI25 KI26

KI37 KI38 KI35 KI36

K147 K148 KI45 KI46

KITI K172 KI73 K174 K177 K178 KI75 KI76

Klsl Klg2 K's3 KIs4 KJs7 KIss Kiss K's6

KIst KJs2 Kt53 KI54 KI57 Kiss K155 KI56

KI61 KI62 KI63 K164 KI67 KI6s KI65 KI66

U63 V63

ut I
I

v I

U 2

V2

U22

v22

U23

V23

/'/63 I

V63 J

f,_

fh,

hx

f2_,

f22_

f22y

f23_

f23y

f63a

f63y

Eq.24

where equation 24 becomes the complete set of equations only after this is done in the

same manner for all 40 elements. If more than one term appears in the same row and

column slot, then the algebraic sum of the numbers is calculated.

Once the complete (global) set of equations are assembled, all of the terms of

equation 24 will either be zero or have a numerical value. The next step would be to

apply the boundary conditions to the now algebraic differential equation. Recall that for a
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cantilevered beam the displacements in the x and y directions are zero at the fixed end.

Referring to Figure 5 one can tell that this implies that the terms ulvl, u22 , V22,/g43,V43 are

all zero in equation 24. The rest of the terms in the displacement vector {_} are the

unknown displacements of each node in each direction that need to be solved for. Also,

the force vector {f}, which is the list of external nodal forces for each direction, contains

unknown terms at the same location where the displacements were known. In other

words, ftx, fly, f22x, f22y, fa3x, andfa3r are the external forces to be calculated. The

known nodal forces are f42x andf42y which are 5001bs and 10001bs, respectively. All of

the other terms in the force vector are zero, this is verified by referring again to Figure 5

(i.e. the external nodal force in the x direction at node 11 is zero---there is no force applied

there).

The next step is to reduce the set of equations. This is done by removing the

rows of the force vector, the stiffness matrix, and the displacement vector that correspond

to the rows of the displacement vector that have known values (this problem, the ones

equal to zero). Then the columns of the stiffness matrix that correspond to the known

terms of the displacement are also removed. This forms our reduced set of equations.

Using this set the unknown displacements are then calculated in the following manner

{ 6REOUCED } = { fR_UUCED }[ KREDUCED ]-1 Eq.25

The complete set of nodal displacements (global displacement vector) was then obtained

by simply expanding its reduced vector in the places where it was reduced and plugging in

the terms that were taken out (this case all O's at nodes 1,22,43). The global force vector

can then be calculated using the complete set of equations (equation 24, complete)

[K]{_5}={f}

where K is the global stiffness matrix (before reduction). Note that the only new terms

that will be obtained are the reaction forces at the fixed end of the beam.

Once the nodal displacements and forces are known, other needed items like the

stresses or strains at the nodes can be calculated. For this report, we are concerned with
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the stresseswithin the beam.Recallthatthe first equationwedealtwith in this FEM by

weightedresidualssectionwasthegoverningequationfor planestress

whereL, C and_were expandedin equation9. Thisequationcomesaboutby

substitutingthestrain-displacementequationsof planestressinto the stress-strain

equationsof planestressandfinally thatresultinto the equilibriumequationsfor plane

stress.However,wecanobtainanequationfor thestressasa functionof displacement

by substitutingthe strain-displacementequationsinto thestress-strainequationsfor

planestress.Theresultis thefollowing setof equations

]
Cryy - 1-V 2 1- [v(x,y)J

o jL[;
Eq.26

The displacement vector is then replaced by equation 12 and the result is the following

equation that can be used to calculate the stress at any point within the beam.

8

_ E O v 0ayy 1S-v2 1

&

o , 1
8 E Niui

i_l

-_ __.,Niv,|
i=1 J

8x

Eq.27

For the beam shown in Figure 5, the maximum average normal stress in the x direction was

calculated to be 18.8 k.s.i. It was found to occur at node 1 of the beam. Since the

maximum stress did not exceed the tensional yield stress of 36 k.s.i, for the material, the

beam did not fail by permanently deforming.

Comparing NESSUS to a Finite Element Code

Since the maximum average normal stress in the x direction was the most

significant stress within the beam, we shall compare its values obtained from the three
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NESSUS runs to the value obtained from my finite element code. Figure 7 shows the

maximum average stress in the x direction obtained from all three runs as well as my fmite

element code.

• Figure7. NESSUS results compared to a deterministic finite element code.

Nessus Results Compared to a
Deterministic Finite Element
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The percent difference between the NESSUS 40 element displacement run and the

deterministic FE code 40 element run was calculated to be 3.59%. Now that confidence

has been gained with the results from the NESSUS finite element code, let us talk about

the most important aspect in NESSUS...its probabilistic capabilities.

Probabilistic NESSUS

NESSUS is a probabilistic finite element code. All of the values that we have

discussed thus so far have been calculated from the average values of the design variables.

If you will recall some of the variables had only one deterministic value, but the

probabilistic design variables had a range of values and associated probabilities of

occurring. One form of output that a user might request is the probability density

function (p.d.f.) for the stresses that were calculated. However, for structural

applications, many times it is desirable that the stress at every point within a material

stay below that material's yield stress. When stresses exceed their yield values, plastic or

permanent deformation has occurred, or will soon occur [3]. Therefore, since many times

an analyst is only concerned with the chances of the solution (or output, orfield) variable
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being below a certain value, i.e., the stress within the body being less than the material's

yield strength, NESSUS can be used to calculate a cumulative distribution function, a

c.d.f., for the requested output. A cumulative distribution function for any random

variable (this case our stress solution is a r.v. due to the r.v. inputs) is still the same set of

values, but there is another value associated with the c.d.f, for a random variable. This

value is the probabili_ or chance that the random variable will be equal to or less than

that value. The cumulative distribution function for the normal stress in the x direction at

node 1 for the 4 element mixed method run was obtained from NESSUS and graphed in

Figure 8.

Figure 8. Cumulative distribution function for node 1 Crxx mixed method run.
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From Figure 8, one can deduce that, due to the uncertainties in our model, there is a

99.99% probability that the normal, x-directional stress at node 1 will be equal to or less

than 30.5 k.s.i. Recall that the yield strength in tension for this material is 36 k.s.i.

Therefore, there is less than a 1/10000 probability that the cantilevered beam analyzed

will fail by permanently deforming or yielding.

Conclusion

The cantilevered beam was analyzed in the probabilistic finite element code NESSUS with

three different runs. For the 4 element displacement method run, the maximum average
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normal x-direction stress within the beam was found to be 15 k.s.i. For the 4 element

mixed method run, the maximum average normal x-direction stress was found to be 20.3

k.s.i. The 40 element displacement method calculated the maximum average normal x-

direction stress to be 19.5 k.s.i. All maximum normal stresses were below the yield

strength in tension for the material, which was found to be 36 k.s.i. Also, all maximum

shear stresses were less than 1 k.s.i, which is well below the material yield strength in

shear of 25 k.s.i. It was noted that the displacement method needed 40 elements to

converge upon the value obtained using simple beam theory and while the mixed method

of analysis needed only 4 elements. Because the normal stress was found to be the most

significant stress it was calculated using simple beam theory to be 20.2 k.s.i. A

deterministic finite element code was written and used the displacement method of

analysis on a 40 element beam. The maximum average normal x-direction stress was

calculated to be 18.8 k.s.i. The percent difference between the 40-element displacement

NESSUS run and the other finite element code run was found to be 3.59%. NESSUS was

observed to yield good results when compared to simple beam theory and another finite

element code. The probabilistic aspect of NESSUS let us obtain the cumulative

distribution function for the normal stress in the x direction at the same location of the

maximum average stress (at the fixed end). From this c.d.f., we observed that the stress at

this node would be equal to or less than 30.5 k.s.i. 99.99% of the time. Knowing that the

yield stress in tension for the material was 36 k.s.i., it was concluded that the beam had

less than a 1/10000 probability of failure by yielding.
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